Authors: Abiodun Abdullahi Solanke (University of Bologna)



The present level of skepticism expressed by courts, legal practitioners, and the general public over Artificial Intelligence (AI) based digital evidence extraction techniques has been observed, and understandably so. Concerns have been raised about closed-box AI models’ transparency and their suitability for use in digital evidence mining. While AI models are firmly rooted in mathematical, statistical, and computational theories, the argument has centered on their explainability and understandability, particularly in terms of how they arrive at certain conclusions. This paper examines the issues with closed-box models; the goals; and methods of explainability/interpretability. Most importantly, recommendations for interpretable AI-based digital forensics (DF) investigation are proposed.