Lest We Forget: Cold-Boot Attacks on Scrambled DDR3 Memory

Bauer, Gruhn, Freiling

Universität Erlangen-Nürnberg

March 30th 2016
Preface

▶ “Lest we Remember”: Halderman et al. 2009, alludes to Isaac Asimov’s short story; protagonist achieves perfect memory by use of a drug
▶ “Lest we Forget”: alludes to Rudyard Kipling’s poem “Recessional”; warns not to forget quickly
▶ The point we’re trying to make: cold boot attacks are still working even with modern memory technologies
Forensic Memory Acquisition

- RAM contains lots of evidence of forensic interest (e.g. TLS session keys, FDE keys, evidence of resident rootkits, etc)
- A snapshot of RAM can be captured either in software (on a running system) or in hardware (on the same or a *different* system)
- Both approaches have their distinctive use-cases in which they’re applicable, both have up- and downsides
Forensic Memory Acquisition

- Cold boot attack: Hard reset of the system and booting into a minimal, memory-dumping OS or transplanting the memory IC into a different PC
- Gruhn/Müller 2013, On the Practicability of Cold Boot Attacks: "However, we also point out that we could not reproduce cold boot attacks against modern DDR3 chips."
What is RAM?

- RAM refers to memory which
 - has low latency (typ. 5-20 ns range)
 - provides great bandwidth (typ. 10-50 GB/s)
 - is usually volatile
- There are a lot of different technologies
- We focus on SDRAM that is widely used in computers today:
 - DDR3
- DDR3 uses capacitor-based bit storage
DDR2 vs. DDR3

- DDR2 and DDR3 are very similar technologies.
- Roughly speaking, DDR3 provides greater throughput at the cost of higher latency.
- This is achieved by doubling the minimum burst length of a memory transaction.
- With increasing speed, managing the required charging/discharging of cells becomes increasingly difficult.
DDR3 approach

- The MCH (component in the CPU that talks directly to RAM) was therefore improved by Intel starting with DDR3 generations
- Basic idea: XOR the datastream with a PRNG pattern (that’s called scrambling or *whitening*)
- → storage bitstream in which statistically half of the bits are set and half are cleared
- i.e. always the *average* case, mitigating the $\frac{dI}{dt}$ peaks
- Hamming-weight of data in memory is statistically zero-sum (i.e. free of bit bias)
The R in RAM

- To be able to still *randomly* access memory, the scrambler unit needs to be able to *seek* to parts of the PRNG stream.
- Intel approach: Use LFSRs, parametrize the LFSRs with a *seed* value that easily allows jumping to an arbitrary location.
- → No performance penalty by scrambler.
- Rough explanation in the Intel patent on that subject.
Schematically

Memory Controller Hub (within CPU)

- data
- address
- write request
- LFSR
- seed
- scrambler
- read request
- LFSR
- descrambler
- memory bus
- DDR3 Memory Chip

Bauer, Gruhn, Freiling

Lest We Forget: Cold-Boot Attacks on Scrambled DDR3 Memory
If you use a DDR3 system to capture RAM content, you’ll only ever see scrambled images.

In fact, those images will have been scrambled *twice* (once by the scrambler and then again by the descrambler).

One of our approaches therefore looked at *differential images*.
Towards descrambling

- The Intel patent is vague and encompasses a lot of different technologies
- Which one is actually used is not described (i.e. how many parallel LFSRs, which bitlength, which bit order, etc.)
- Docs are unavailable (to us), only few lines of reverse-engineered CoreBoot code available
Reprogramming the scrambler

- The BIOS is usually stored on Flash, (approx. 100ns to read a single byte at 80 MHz)
- Therefore, RAM initialization happens *very early* during boot
- In fact, it’s one of the first things the BIOS does so it can relocate itself from Flash to DRAM
- We have good reason to believe that reprogramming the scrambler with an active RAM channel is disallowed by hardware (as it should be)
- This makes probing within the system and hacking code difficult
Looking at dumped ground-state memory
The ground pattern of a memory chip is undefined.

It tends to correlate, however, with its physical construction (i.e., if cells are biased against Vcc or GND).

It is therefore difficult to extract the stream cipher key crumbs (because the plaintext varies).
Placing Mona Lisa in that spot
Use freeze spray
First cold-boot Lisa memdump (-30°C)
It’s clearly visible that the information survived the reboot (i.e. no clearing of the memory was performed during initialization).

And we additionally know the plaintext.

But if we didn’t, we could first try to descramble it with a related-key approach.
Using related-key descrambling

Bauer, Gruhn, Freiling

Lest We Forget: Cold-Boot Attacks on Scrambled DDR3 Memory
Systematic approach

- XORing the memdump with the original image gives us an approximation of the PRNG steam
- We partition this PRNG stream in chunks of different length (spoiler: 64 bytes)
- And try to group them together in groups which have many bits matching (because of acquisition errors)
- Then do majority voting on the key bits (most in agreement likely to be correct)
Systematic approach

- This allows us to extract the two 64-bytes keys (one for each memory channel)
- With deinterleaving (which we also describe in the paper) the image can now successfully be descrambled
- By utilizing the LFSR construction and congruencies which we noticed within the keystream, we reduce that known plaintext from 128 bytes to just 50 bytes
Final result
Overt observations

- The obvious observation is that we can descramble transplanted memory using the described method and with 50 bytes of known plaintext.
- A side note should be that capturing DDR3 snapshots is much more difficult than with DDR2 memory (much higher bit decay).
- It was more difficult than we imagined to get accurate results.
Covert observation

- Thinking out loud: Intel implemented this to mitigate the detrimental effects of $\frac{dI}{dt}$ peaks
- If you know the scrambler stream, however, it is still perfectly possible to force such peaks
- Fill a buffer with the keystream, invert it repeatedly.
- Could this possibly lead to memory corruption attacks like rowhammer introduced? Not sure, but surely tempting.
Are there any...

...questions?