The Application Of Reverse Engineering Techniques Against The Arduino Microcontroller To Acquire Uploaded Applications

By

Steve Watson

Presented At

The Digital Forensic Research Conference

DFRWS 2014 USA Denver, CO (Aug 3rd - 6th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http://dfrws.org
Disclaimer

The opinions expressed and materials shared in this presentation are my own and may not reflect the opinions, policies, or procedures of my employer.
What is Arduino?

- A single board microcontroller platform.
- An open source electronics platform.
Why are we talking about Arduino?

- New, foundational technology appearing in many different form factors.
- No clear direction on forensic acquisition of data on this evolving platform.
Where is Arduino today?
“By 2018, 3D printing will result in the loss of at least $100 billion per year in intellectual property globally.”
Example - Arduino Phone

http://blog.arduino.cc/2013/08/12/diy-cellphone/

http://www.instructables.com/id/ArduinoPhone/
Examples - ArduSat

ARDUSAT SUCCESSFULLY LAUNCHED IN SPACE - WATCH VIDEO!

Zoe Romano — August 12th, 2013

ArduSat was successfully launched in space last Sunday 4th August and it’s now on its way to the International Space Station (ISS):
Arduino Basics

<table>
<thead>
<tr>
<th>microcontroller</th>
<th>CPU, RAM and ROM on a single chip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>shield</td>
<td>daughter card that sits on top of the Arduino</td>
</tr>
<tr>
<td>sketch</td>
<td>the code or application written in C++ that is uploaded to the Arduino</td>
</tr>
</tbody>
</table>
Is there data to recover?
Where is the data?

- Microcontroller
- Development Systems
- Remote Endpoints
What is the data?

<table>
<thead>
<tr>
<th>Microcontroller</th>
<th>Development Systems</th>
<th>Remote Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>running applications (flash)</td>
<td>.ino (Arduino sketch)</td>
<td>cloud computing updates (Twitter, Facebook, IoT pages)</td>
</tr>
<tr>
<td>NVM, persistent (eeprom)</td>
<td>.elf (intermediate step between c++ and assembly)</td>
<td>control messages (c&c of other microcontroller devices)</td>
</tr>
<tr>
<td>.csv, .txt (asci or hex on SDCARD)</td>
<td>.hex (assembly)</td>
<td>.txt, .csv</td>
</tr>
<tr>
<td>Fuses (single byte hex values)</td>
<td></td>
<td>.json (JSON calls to other applications)</td>
</tr>
</tbody>
</table>
How I approach new devices

1. What is the operating system?
2. What is the storage?
3. What is the connectivity?
4. How is the system updated, installed, accessed?
5. What are the parallels with other systems and devices?
6. What existing documentation and information exists?
Focus on the Arduino
Connection to the target

1. Chip removal (chip-off equivalent)

2. Tethered to another Arduino (computer to computer equivalent)

3. Connect to a programming port on the board (JTAG equivalent)
Connection: Chip-off

Connection: Tethered Arduino

Arduino Tutorial:
Using an Arduino as an AVR ISP (In-System Programmer)
http://arduino.cc/en/Tutorial/ArduinoISP
Connection: JTAG Equivalent

Olimex STK500v2 connected via ICSP to an Arduino UNO
Connection: ICSP

ICSP - In-Circuit Serial Programming
Software used to acquire

1. AVRDUDE - AVR Downloader/UploadEr
 a. opensource
 c. Included in the Arduino IDE install under install directory
 ../Arduino/hardware/tools/avr/bin/avrdude.exe

2. Atmel AVR Studio
Data to acquire

Flash (32KB)

EEPROM (1KB)
- NVM reserved for persistence across uploads

Fuses (1B x 3 reserved)
- Ifuse, hfuse, efuse
- single byte hex configurations related to clock, bootloader and voltage (see reference slide for more detail)
Example: Read flash memory and dump hex to specific file.

```
avrdude -p m328p -c stk500v2 -P com4 -U flash:r:"[path/to/file/filename.hex]":r
```

-\texttt{-p} [part number]
-\texttt{-c} [programmer]
-\texttt{-P} [com port]
-\texttt{-U} [memory operation]

- Note the :r: and :r to define READ
- change ‘flash’ to eeprom, lfuse, hfuse and/or efuse to acquire reserved portions.
Software: AVRDUDE

C:\apps\avrdude -p m328p -c stk500v2 -P com4 -U flash:r:"c:/temp/arduino_uno.hex":r

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e950f

avrdude: reading flash memory:

Reading | ## | 100% 94.89s

avrdude: writing output file "c:/temp/arduino_uno.hex"

avrdude: safemode: Fuses OK (E:05, H:D6, L:FF)

avrdude done. Thank you.
Full walkthrough (screenshots) of an MCU acquisition in the backup slides.
Investigations where data may be needed

1. Supply chain investigations
2. Malware analysis
3. Improvised devices
4. Automation and control systems
5. Medical, fitness
6. Security, access control
7. Drones
8. Cloud
Why does this matter?

1. Investigations and litigation are coming to this new technology area.

2. The principles applied here can be expanded to other embedded technologies.
Thank you!

Steve Watson
forensics@stevewatson.net
steve.watson@intel.com

Twitter @stevewatson
LinkedIn - wansonsteve
Backup Material
Credits

slide 5 - Icons made by www.flaticon.com
slide 6 - Image http://upload.wikimedia.org/wikipedia/commons/8/87/Makerbot_Thing-O-Matic_Assembled_Printing_Blue_Rabbit.jpg
http://www.gartner.com/newsroom/id/2603215
slide 8 - Screenshots and images in order of animation:
https://www.kickstarter.com/projects/575960623/ardusat-your-arduino-experiment-in-space,
http://www.bloogcdn.com/www.engadget.com/media/2012/06/ardustat8388676666666666.jpg
slide 11 - Icons made by www.flaticon.com
slide 17 - image created with Fritzing
Reference - Fuses

<table>
<thead>
<tr>
<th>Bit</th>
<th>Low</th>
<th>High</th>
<th>efuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>CKDIV8</td>
<td>Divide clock by 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSTDISBL</td>
<td>External reset disable</td>
</tr>
<tr>
<td>6</td>
<td>CKOUT</td>
<td>DWEN</td>
<td>debugWIRE Enable</td>
</tr>
<tr>
<td>5</td>
<td>SUT1</td>
<td>SPIEN</td>
<td>Enable Serial programming and Data Downloading</td>
</tr>
<tr>
<td>4</td>
<td>SUT0</td>
<td>WDTON</td>
<td>Watchdog Timer Always On</td>
</tr>
<tr>
<td>3</td>
<td>CKSEL3</td>
<td>EESAVE</td>
<td>EEPROM memory is preserved through chip erase</td>
</tr>
<tr>
<td>2</td>
<td>CKSEL2</td>
<td>BOOTSZ1</td>
<td>Select boot size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BODLEVEL2</td>
<td>Brown-out Detector trigger level</td>
</tr>
<tr>
<td>1</td>
<td>CKSEL1</td>
<td>BOOTSZ0</td>
<td>Select boot size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BODLEVEL1</td>
<td>Brown-out Detector trigger level</td>
</tr>
<tr>
<td>0</td>
<td>CKSEL0</td>
<td>BOOTrST</td>
<td>Select reset vector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BODLEVEL0</td>
<td>Brown-out Detector trigger level</td>
</tr>
</tbody>
</table>

AVR Acquisition with Atmel Studio

Begin
Software: Atmel Studio
1. From Atmel Studio main screen, choose ‘Debug’ then ‘Device Programming’.
2. Identify the ‘Tool’, ‘Device’, and ‘Interface’ then click ‘Apply’.
The ISP Clock frequency must be lower than 1/4 of frequency the device is operating on.
Detected Device

- **Device names**: ATmega328P, ATA6614Q
- **Device signature**: 0x1E950F

Datasheet Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>ATmega328P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>AVR8</td>
</tr>
<tr>
<td>Flash size</td>
<td>32 KB</td>
</tr>
<tr>
<td>EEPROM size</td>
<td>1 KB</td>
</tr>
<tr>
<td>SRAM size</td>
<td>2 KB</td>
</tr>
<tr>
<td>VCC range</td>
<td>1.8 - 5.5 V</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

External links

- [Device Information](#)
- [Datasheets](#)
An ongoing operation is taking longer than expected.
Details: Modules->readFromMemory
You can stop waiting for the operation, in which case you may need to restart AVR studio, or wait some more.

(The timeout can be set using the "Tools->Options->Debugger->AVR Debugger->AVR Communication Timeout" option.)
STK500 (COM4) - Device Programming

Device: ATmega328P
Interface: ISP
Device signature: 0x1E950F
Target Voltage: 4.8 V

Memories

Device:
- Erase Chip
- Erase now

Flash (32 KB)
- Erase device before programming
- Verify Flash after programming

EEPROM (1 KB)
- Verify EEPROM after programming

Getting board properties...OK
Device information copied to clipboard
AVR Acquisition with Atmel Studio

End