Design and Implementation of FROST - Digital Forensic Tools for the OpenStack Cloud Computing Platform

By
Josiah Dykstra and Alan Sherman

Presented At
The Digital Forensic Research Conference
DFRWS 2013 USA Monterey, CA (Aug 4th - 7th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http://dfrws.org
Design and Implementation of FROST:
Digital Forensic Tools for the OpenStack Cloud Computing Platform

Josiah Dykstra and Alan T. Sherman

August 6, 2013
The views expressed in this presentation are mine alone. Reference to any specific products, process, or service do not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or the Department of Defense.
Takeaway

FROST provides carrier-grade, user-driven, trustworthy forensic acquisition of cloud-based:
INTRODUCTION
Setting the Stage
The AWS Management Console provides a graphical interface to Amazon Web Services. Learn more about how to use our services to meet your needs, or get started by selecting a service.
Cloud Layers

<table>
<thead>
<tr>
<th>Service stack components*</th>
<th>Service Layers Definition</th>
<th>* as a Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>Your Company Ltd</td>
<td></td>
</tr>
<tr>
<td>Client Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interconnecting Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosted Application Software</td>
<td>IT Department</td>
<td></td>
</tr>
<tr>
<td>Infrastructure Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Systems</td>
<td>Windows, Linux</td>
<td></td>
</tr>
<tr>
<td>Virtualisation Layer</td>
<td>Xen, VMware</td>
<td></td>
</tr>
<tr>
<td>Physical Servers</td>
<td>IBM, HP, Dell</td>
<td></td>
</tr>
<tr>
<td>Networking & Firewalling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Centre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical & Electrical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Brand names for illustrative / example purposes only, and examples are not exhaustive.

http://www.katescomment.com/iaas-paas-saas-definition/
Launch Instance

Instance Source
- Image:
 - cirmos-0.3.0-x86_64-uec

Instance Name
- My First Instance

Flavor
- m1.tiny

Instance Count
- 1

Flavor Details
- Name: m1.tiny
- VCPUs: 1
- Root Disk: 0 GB
- Ephemeral Disk: 0 GB
- Total Disk: 0 GB
- RAM: 512 MB

Project Quotas
- Number of Instances (0): 10 Available
- Number of VCPUs (0): 20 Available
- Total RAM (0 MB): 51,200 MB Available

Launch
REQUIREMENTS
“Digital Evidence submitted for examination should be maintained in such a way that the integrity of the data is preserved. The commonly accepted method to achieve this is to use a hashing function.” (SWGDE 2005)
"The two critical measurable attributes of the acquisition process are completeness and accuracy. Completeness measures if all the data was acquired, and accuracy measures if the data was correctly acquired." (NIST 2004)
Requirements

- Be compatible with existing forensic formats.
- Be easy to generate.
- Be open and extensible.
- Be scalable.
- Follow existing practices and standards.
Legal Requirements

Rule 901. AUTHENTICATING OR IDENTIFYING EVIDENCE

(a) In General. To satisfy the requirement of authenticating or identify an item of evidence, the proponent must produce evidence sufficient to support a finding that the item is what the proponent claims it is.

(b) ...

9) Evidence about a Process or System. Evidence describing a process or a system and showing that it produces an accurate result.

Federal Rules of Evidence
http://www.law.cornell.edu/rules/fre/rule_901
DESIGN
Data Retrieval

- Virtual Disk Images
- Host Firewall Logs
- API Logs
2012-12-01 13:30:49 INFO nova.api.openstack.wsgi [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] POST http://10.34.50.142:8774/v2/5ee304fa01c88387f56111576cf819/servers
2012-12-01 13:30:49 DEBUG nova.quota [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Created reservations ['915e9c89-b3bc-4091-8b75-3b555961ec3e', '72c39d24-0a96-42ca-96f1-58b5b5239-65-872b-4b40-a853-2aa7c730262e'] from (pid=16036) reserve /opt/stack/nova/nova/quota.py:697
2012-12-01 13:30:50 DEBUG nova.compute.api [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Going to run 1 instances... from (pid=16036) _create_instance /opt/stack/nova/nova/compute/api.py:492
2012-12-01 13:30:50 DEBUG nova.openstack.common.rpc.amqp [-] Making asynchronous cast on scheduler... from (pid=16036) cast /opt/stack/nova/nova/openstack/common/rpc/amqp.py:376
IMPLEMENTATION
Web Interface

Instance Detail: My First Instance

Overview Log VNC Incident Response

Instance Incident Response Tasks
- Download Nova API Logs
- Download Host Firewall Logs
- Download Disk Image
<?xml version='1.0' encoding='UTF-8'?>
<dfxml xmloutputversion='1.0'>
<creator version='1.0'>
 <program>FROST</program>
 <version>1.0</version>
<execution_environment>
 <os_sysname>Linux</os_sysname>
 <os_release>3.2.0-25-virtual</os_release>
 <os_version>#40-Ubuntu SMP Thu Nov 29 22:20:17 UTC 2012</os_version>
 <host>domU-12-31-39-17-29-5D</host>
 <arch>x86_64</arch>
</execution_environment>
</dfxml>
<fileobject>
 <filename>/opt/stack/data/nova/instances/instance-00000003/disk</filename>
 <filesize>6946816</filesize>
 <ctime>2012-11-29T11:51:49Z</ctime>
 <mtime>2012-11-29T11:51:49Z</mtime>
 <atime>2012-11-29T11:52:07Z</atime>
 <hashdigest type='SHA1'>8891608acfc13472bd2ca7dc409e973bf112bce3</hashdigest>
</fileobject>

<rusage>
 <utime>0.036002</utime>
</rusage>
API Logs API

$ nova get-nova-logs 0afcfbcd-b836-4593-a02c-25d8d3a94b00 verify.xml

[truncated]
2012-12-01 13:30:49 INFO nova.api.openstack.wsgi [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] POST http://10.34.50.142:8774/v2/5ee3040fa890428387f56111576cf819/servers
2012-12-01 13:30:49 DEBUG nova.quota [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Created reservations ['915e9c89-b3bc-4091-8b75-3b555961ec3e', '72c39d24-0a96-42ca-96f1-593da3aa9f81', '57843316-872b-4b40-a853-2aa7c730262e'] from (pid=16036) reserve /opt/stack/nova/nova/quota.py:697
2012-12-01 13:30:50 DEBUG nova.compute.api [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Going to run 1 instances... from (pid=16036) _create_instance /opt/stack/nova/nova/compute/api.py:492
[truncated]
Firewall Logs API

$ nova get-firewall-logs 0a18799f-c198-4dbb-b369-b49184e3dfbc verify.xml

0a18799f-c198-4dbb-b369-b49184e3dfbc: Nov 28 11:13:38 domU-12-31-39-17-29-5D kernel: [310.765760] IPTables-Dropped: IN=eth0 OUT=
MAC=12:31:39:17:29:5d:fe:ff:ff:ff:ff:ff:08:00 SRC=130.85.36.72 DST=10.97.42.171 LEN=52 TOS=0x00 PREC=0x00 TTL=48 ID=29222 DF PROTO=TCP SPT=55739 DPT=443 WINDOW=1002 RES=0x00 ACK URG=0

0a18799f-c198-4dbb-b369-b49184e3dfbc: Nov 28 11:13:36 domU-12-31-39-17-29-5D kernel: [309.623023] IPTables-Dropped: IN=eth0 OUT=
MAC=12:31:39:17:29:5d:fe:ff:ff:ff:ff:ff:08:00 SRC=172.16.0.23 DST=10.97.42.171 LEN=103 TOS=0x00 PREC=0x00 TTL=64 ID=42188 PROTO=UDP SPT=33905 DPT=53 LEN=83
[truncated]
$ nova get-disk myvol-e9a5612d report.xml
MD5: b17ee04095b2a3d81eed98628072eab6
SHA1: 399f5ffaccd09fe43d642d5f0d996875ca650c9f

$ sha1sum myvol-e9a5612d
399f5ffaccd09fe43d642d5f0d996875ca650c9f
Tests for functionality and scalability

- 100 fake users
- 5 VMs per user
- Scan ports 1-1024 on each VM
- Randomly try to stop VMs
- For 20 users download API logs, FW logs, disk images

Live evaluation with users/admins of gov’t cloud
Other Uses

- Data preservation
- E-discovery
- Real-time monitoring
- Metrics
- Auditing
- Other acquisition capabilities
Summary

- Investigators need forensic data
- FROST enables:
 - Independent data acquisition
 - No need to trust Guest OS
 - Scalable to cloud environments
 - Platform for future tools