Time-of-Recording Estimation for Audio Recordings

Lilei Zheng, Ying Zhang, Chien Eao Lee and Vrizlynn L. L. Thing

Cyber Security Cluster, Institute for Infocomm Research (I²R), Singapore
Outline

- Introduction: Electric network frequency (ENF)
- Method: Distance/similarity between two ENF sequences
- Application: Time-of-recording estimation (ToRE)
 - Demo video show
Outline

- Introduction: Electric network frequency (ENF)
- Method: Distance/similarity between two ENF sequences
- Application: Time-of-recording estimation (ToRE)
 - Demo video show
Electric Network Frequency

- A electric power grid has a nominal frequency of either 50 Hz (e.g., Singapore) or 60 Hz (e.g., United States).
- ENF pattern: random fluctuations over time around the nominal value, e.g., [49.9, 50.1] Hz.
Electric Network Frequency

- An ENF pattern is a sequence of values. The longer it is, the larger probability it is unique from other ENF sequences.
Electric Network Frequency

➢ All equipment connected to the electric power operate in accordance with the ENF.
 • The ENF pattern is consistent across different places within the same power grid.
 • Recording device plugged into power mains can pick up the ENF signal.
 • Portable recording device near other electric-powered devices can capture the ENF signal, e.g., through acoustic hum and mechanical vibrations.

➢ ENF is a good timestamp.
Use Case

- An audio recording is used as evidence, but the claimed recording time is doubted.

- Conditions
 - The recording was taken in an environment surrounded by electric devices such as lights and TV, i.e., we can extract the ENF pattern from the recording.
 - We have the historical ENF data (from long time ago to today) covering the possible recording time.
 - It is possible to know the actual recording time by pattern matching.
ENF Timestamp

- Recording device plugged into power mains is used to pick up the ENF signal as reference ENF.
 - Non-interrupted recording through years.
ENF Timestamp

- The ENF signal, *unintentionally* captured by electric-powered or portable recording devices, is called test ENF.
 - Many recorders are able to make audios.
ENF Timestamp

Different from the reference ENF, the test ENF may be unavailable or partially “noisy” due to, e.g.,

- Far away from any electric-powered device.
- Quick move of the audio recorder.
Time-of-recording Estimation

- It is hard to find the exact match within the reference ENF for the test ENF.
- **We search for the best match** and take its timestamp as the estimated recording time for the test audio.
 - A proper similarity to measure the matching.
 - A fast search algorithm.
Outline

- Introduction: Electric network frequency (ENF)
- Method: Distance/similarity between two ENF sequences
- Application: Time-of-recording estimation (ToRE)
 - Demo video show
Visual Comparison

- Visual comparison
 - Easy to know how and where is the match.
 - **Inefficient** and subjective (human biased).

![Graph](image_url)

- Frequency (Hz)
- Time (Seconds)
- MSE: 3.5137e-04
- CC: 0.7603
- bSim: 0.8305
MSE and CC

Mean squared error (MSE) and correlation coefficient (CC)
- Traditional measures used in prior arts.
- Problem: larger local mismatches will contribute more to the final similarity/distance score.
Bitwise Similarity

- Bitwise Similarity (bSim)

\[bSim(t, r) = \frac{1}{N} \sum_{i=1}^{N} s_i, \quad s_i = \begin{cases} 1, & \|t_i - r_i\| < \theta \\ 0, & \|t_i - r_i\| \geq \theta \end{cases} \]

- Using a threshold to **truncation** the local mismatch
 - All the local mismatches larger than the threshold are treated the same.
 - A binary version of MSE.
Outline

➢ Introduction: Electric network frequency (ENF)

➢ Method: Distance/similarity between two ENF sequences

➢ Application: Time-of-recording estimation (ToRE)
 • Demo video show
Fast Search

- Bitwise Similarity (bSim)

$$bSim(t, r) = \frac{1}{N} \sum_{i=1}^{N} s_i, \quad s_i = \begin{cases} 1, & ||t_i - r_i|| < \theta \\ 0, & ||t_i - r_i|| \geq \theta \end{cases}$$

- The distance map between the test ENF and the reference ENF is binary.
 - 1 for local match, 0 for local mismatch.
 - Operating on binaries is beneficial for fast computation.
Fast Search

- Binary distance map
 - White for 1, black for 0.
 - White diagonal indicates the position of the matched segment on the reference ENF.
Fast Search

- Curve of bSim values
 - Similarity values of all the diagonal lines.
Conditional Uniqueness

- A short test ENF may have multiple matches on the reference ENF.
Top-3 Retrieval

- Retrieving the Top-3 best matches to avoid wrong decision due to the probable problem of multiple matches.
- The Top-1 similarity should be significantly larger than the other two similarities.
Top-3 Retrieval

- Exceptions are given up with “no decision”.
 - To ensure high precision of the final decisions.
 - High precision is essential for supporting evidence in forensics.
Experiment Setup

- Reference ENF data of Singapore since 2013.
- Test ENF data collected in August, 2016, including 187 audio recordings.

- For each test audio, the estimated time within a shift of 1 minute to the ground truth is considered as correct.
 - People usually note time up to minutes, e.g., 16:50.
 - The estimation can be accurate up to seconds.
- Error rate; precision & recall.
Experiment (1)

- Error rates with respect to the threshold θ
 - The best θ is between 0.005 and 0.007.
Experiment (2)

- Comparison to prior arts
 - Lowest error rate
 - Fastest search

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Min. MSE (baseline 1)</th>
<th>Max. CC (baseline 2)</th>
<th>DMA [1]</th>
<th>Max. bSim (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-1 error</td>
<td>22.46%</td>
<td>22.46%</td>
<td>20.32%</td>
<td>2.67%</td>
</tr>
<tr>
<td>Searching time</td>
<td>1.4649</td>
<td>1.9698</td>
<td>41.0444</td>
<td>0.8973</td>
</tr>
</tbody>
</table>

- Binarization is beneficial for this task
 - Robust to local mismatch (e.g., noise)
 - Efficient computation on binaries
Experiment (3)

- Top-3 retrieval can ensure high precision
 - Significance gap: the similarity gap between the Top-1 result and the others
 - Precision reaches 100% when the significance gap is larger or equal to 0.07, with the recall as high as 94.65%.
Conclusions

- Bitwise similarity (bSim) for accurate and fast ENF matching.
- Top-3 retrieval for making confident decisions of timestamp estimation.
- A beta-version application implemented in MATLAB.
 - Video demo show in next slide.
Demo Video