
DIGITAL FORENSIC RESEARCH CONFERENCE

Extracting Windows Command Line

Details from Physical Memory

By

Richard Stevens and Eoghan Casey

Presented At

The Digital Forensic Research Conference

DFRWS 2010 USA Portland, OR (Aug 2nd - 4th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

Extracting Windows Command
Line Details from Physical

Memory.
Richard Stevens and Eoghan Casey

Introduction
•  Recent research has demonstrated how effective

memory forensics can be in identifying information of
forensic value.

•  One area of interest is the commands that have been
typed by a user or attacker into the command prompt.

•  The presence of a command string in memory might
indicate a command that was typed by the user. Or it
could be a fragment of a help file.

•  Context is important - even if commands can be
identified using simple string searches the order can
change the meaning

•  Is it possible to recover the history of a command prompt
from a Windows XP memory capture by examining the
data structures used to store the command history?

Windows Command Line History

•  DOSKEY
–  Originally a separate application for MS-DOS that has been

incorporated into Windows XP as a command.
–  Accessed by entering “doskey / history” or pressing “F7”
–  stores the last 50 commands entered by the user by default
–  The buffer’s size is stored in:

 HKEY_CURRENT_USER\Console\HistoryBufferSize
–  Most familiar to DOS and Windows users using the “up” and

“down” arrows to scroll through previous commands.
–  Memory resident and only normally accessible from within a

running cmd.exe process.
–  Can be cleared using “doskey /reinstall” or pressing “ALT-F7”

DOSKEY

Initial Research
•  A literary review was conducted to identify any

indications of how DOSKEY structures might be stored.
No significant resources were found.

•  A Windows XP VM was created and memory captures
were taken using 256mb, 512mb, and 1024mb of RAM.
–  Each capture contained one or more command prompt windows

containing known commands including readily identifiable
strings.

–  The resulting image was examined manually to identify possible
data structures containing the known unique commands.

•  Once possible command history elements were identified
in memory, each was tested and verified by poking the
memory of a live VM and observing the results on the
command history.

Initial Findings
•  Even knowing a unique command string, still difficult to

identify the underlying data structure
•  Data structures are not stored within the cmd.exe

process as expected
–  In Windows XP DOSKEY the data structures containing the

command history are found within the Windows XP user runtime
process (csrss.exe)

•  Commands are stored in a relatively simple data
structure encoding the length of the command and a
Unicode representation of the command.

•  The Command History is maintained in a data structure
that encodes the number of command elements and
pointers to each individual command.

Command History
commandElement {

 0x00 short ByteCount; // Short,Little-Endian
 0x02 char Command [ByteCount/2]; // UTF-16

}

commandHistory {

 0x00 short ElementCount;
 0x02 short endOffset;
 0x04 short pointerIndex;
 0x06 short startOffset;
 0x08 short HistoryBufferSize;
 0x16 commandHistory* ?
 0x20 commandHistory* ?
 0x24 commandElement1*;
 0x28 commandElement2*;
 0x n commandElementHistoryBufferSize*;

}

Evaluation of Method
•  Unable to identify the function of all fields within the

Command History structure.
•  Each Command Element is useful from a forensic

perspective, but not unique enough to identify in a
memory image with any significant success.

•  Possible to search for commands using a Bottom-up
approach by identifying possible command elements,
then searching for the corresponding Command History
object.

•  Unfortunately this required a time intensive manual
reconstruction process that was difficult to scale.

•  Each Command History structure is fairly unique.
•  If HistoryBufferSize is known and intact it is relatively

easy to scan for these structures using a top-down
approach.

Top-down Method
•  Scan for Command History Objects, then enumerate the

array of pointers to each Command History Element.

commandHistory {

 0x00 short Between 0 and HistoryBufferSize
 0x02 short Between -1 and HistoryBufferSize
 0x04 short Between -1 and HistoryBufferSize
 0x06 short Between 0 and HistoryBufferSize
 0x08 short HistoryBufferSize (default 0x32);
 0x16 commandHistory* Valid Address
 0x20 commandHistory* Valid Address

}

Evaluation of Method
•  A volatility plug-in was written called “cmd_history” that

scans for and displays possible command history objects
using a top-down approach

•  The plug-in was then tested against three publicly
available Windows XP memory captures with an
unknown command history.
–  DFRWS 2008 Rodeo Image

•  dfrws2008-rodeo-memory.img
–  NIST Reference Data Set

•  xp-laptop-2005-07-04.img
•  xp-laptop-2005-06-25.img

•  In all three samples we were able to recover an intact
command history object that contains large segments of
commands.

DFRWS 2008 Rodeo

Virtual Address Physical Address Size (bytes) Command

004E8E88 149cfE88 8 cd \

01283A20 14fbbA20 18 mkdir mem

01283B48 14fbbB48 12 cd mem

004E1FF8 80d6FF8 138 "Z:\emidnight On My Mac\Downloads
\mdd_1.3.exe" -o sv-laptop-memo

Add.
Command

012839C0 14fbb9C0 88 (vxfer.exe X:\Secretplans\secretplans1.jpg

01283AE8 14fbbAE8 - …….exe X:\Secretplans\secretplans……

01283B48 14fbbB48 12 cd mem

01283BA8 14fbbba8 84 svxfer.exe X:\Secretplans\secretplans7.jpg

004E1FA0 80d6FF8 ? ?

Element
Count

End
Offset

pointer
Index

Start
Offset

History
Buffer
Size

4 3 3 0 50

NIST – XP Laptop 2005/06/25
Element
Count

End
Offset

pointer
Index

Start
Offset

History
Buffer
Size

7 6 6 0 50

Virtual Address Physical Address Size (bytes) Command

004E2D28 14400D28 4 d:

004E1F78 dcbfF78 12 cd dd

004E2CC8 14400CC8 6 dir

004E2E00 14400E00 34 Cd UnicodeRelease

004E2CB8 14400CB8 6 dir /

004E1F90 dcbfF90 6 dd

004E1FF8 dcbfFF8 88 dd ….. (presumably dd memory image
command)

NIST – XP Laptop 2005/07/04
Element
Count

End
Offset

pointer
Index

Start
Offset

History
Buffer
Size

20 13 13 0 50

Virtual Address Physical Address Size (bytes) Command

004E1F90 de7fF90 4 dd

004E2CB8 193ecCB8 6 cd\

004E2D18 193ecD18 4 dr

004E2D28 193ecD28 6 ee:

004E2D38 193ecD38 4 e;

004E2D48 193ecD48 4 e:

004E2D58 193ecD58 4 dr

004E2D68 193ecD68 4 d;

004E2D78 193ecD78 4 d:

004E2D88 193ecD88 4 dr

004E2D98 193ecD98 4 ls

004E2Da8 193ecDa8 14 cd Docu

004E2DC0 193ecDC0 68 cd Documents and..................

004E2E58 193ecE58 4 dr

004E2E68 193ecE68 4 d:

004E2E78 193ecE78 12 cd dd\

004E2E90 193ecE90 34 cd UnicodeRelease

004E2Ec0 193ecEc0 4 dr

004E2ED0 193ecED0 6 dd

004E4100 19588100 132 dd if=\\.\PhysicalMemory of=c:\xp-2005-07-04-1430.img conv=noerror

Interesting Results
•  The command history “size” field may allow the contents

of a fragmented or partial command string to be inferred
by allowing us to identify the size of the original
command.

xp-laptop-2005-06-25.img

Virtual Address Physical Address Size (bytes) Command

004E1FF8 dcbfFF8 88 dd ….. (presumably dd memory
image command)

Virtual Address Physical Address Size (bytes) Command

004E2DC0 193ecDC 68 cd Documents and..................

xp-laptop-2005-07-04.img

Interesting Results
•  The command history buffer may contain pointers to commands

from a wiped or closed command prompt session (slack space).

Element
Count

4

Virtual
Address

Physical
Address

Size Command

004E8E88 149cfE88 8 cd \

01283A20 14fbbA20 18 mkdir mem

01283B48 14fbbB48 12 cd mem

004E1FF8 80d6FF8 138 "Z:\emidnight On My Mac
\Downloads
\mdd_1.3.exe" -o sv-
laptop-memo

012839C0 14fbb9C0 88 (vxfer.exe X:\Secretplans
\secretplans1.jpg

01283AE8 14fbbAE8 - …….exe X:\Secretplans
\secretplans……

01283B48 14fbbB48 12 cd mem

01283BA8 14fbbba8 84 svxfer.exe X:\Secretplans
\secretplans7.jpg

004E1FA0 80d6FF8 ? ? DFRWS 2008 Rodeo

Interesting Results
•  In some cases, we were able to recover the command

history objects from a closed cmd.exe processes.

bob.vmem
https://www.honeynet.org/challenges/2010_3_banking_troubles

Interesting Behaviors
•  Separate command history buffer objects are created for

each cmd.exe process on the system.
•  DOSKEY /reinstall effective at removing “live” DOSKEY

history structures.
•  In practice however partially intact copies may be found

in memory even after deletion.
•  Default and “erased” command history buffer objects are

identical.

Challenges & Limitations
•  In practice can be difficult to capture closed command

history prompts in an actual intrusion or forensic
investigation unless the cmd.exe process is still active.

•  The current search relies on knowledge of the maximum
buffer size which can be changed by the end user.

•  Research is limited to Windows XP Machines. Ongoing
work indicates that there are identical structures are
present in Windows 2000 and Windows Server 2003.

•  A properly written bottom-up approach may be more
effective at identifying partially overwritten command
history structures.
–  Frequency analysis of DOS Commands?

•  Several variables within the command history structure
are unidentified and if altered may alter the effectiveness
of the process.

Conclusion
•  Relatively easy to scan for intact DOSKEY command

data structures once the structures themselves have
been identified using a top-down approach.

•  Information of forensic value can be recovered from both
complete and partially intact DOSKEY structures.

•  DOSKEY structures exhibit slack space that may contain
information of interest.

•  DOSKEY metadata can be used to infer the number,
length, content, or order of partially recovered
commands.

•  Work needs to be expanded to identify similar structures
in Windows Vista, Windows 7, Server 2008 and alternate
command shells such as Windows PowerShell.

Questions?

