
DIGITAL FORENSIC RESEARCH CONFERENCE

Using the HFS+ Journal For Deleted File Recovery

By

Aaron Burghardt, Adam Feldman

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2008 USA

Baltimore, MD (Aug 11th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

Using the HFSD journal for deleted file recovery

Aaron Burghardt*, Adam J. Feldman

Booz Allen Hamilton, Herndon, VA 20171, United States

Keywords:

Mac OS X

HFSþ
Journal

Deleted

File

Recovery

a b s t r a c t

This paper describes research and analysis that were performed to identify a robust and

accurate method for identifying and extracting the residual contents of deleted files stored

within an HFSþ file system. A survey performed during 2005 of existing tools and

techniques for HFSþ deleted file recovery reinforced the need for newer, more accurate

techniques.

Our research and analysis were based on the premise that a transactional history of file I/O

operations is maintained in a Journal on HFSþ file systems, and that this history could be

used to reconstruct recent deletions of active files from the file system. Such an approach

offered a distinct advantage over other current techniques, including recovery of free/

unallocated blocks and ‘‘file carving’’ techniques. If the journal entries contained or refer-

enced file attributes such as the extents that specify which file system blocks were

occupied by each file, then a much more accurate identification and recovery of deleted

file data would be possible.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Background

Applications for recovering deleted files on Mac OS HFS and
HFSþ file systems historically have had limited success
compared to recovery tools for other common file systems;
the difference is a consequence of HFS’s use of B-tree data
structures to store metadata that describes the name, block
allocation, and other file attributes. When a file is deleted,
the B-tree is immediately updated to maintain consistency,

which overwrites the file metadata.
With the release of Mac OS X v10.2 in August 2002, Apple

enhanced HFSþ by adding metadata journaling, which groups
metadata changes into a transactional block. The journaling
can be manually enabled or disabled on-the-fly by the user.1

In version 10.2, journaling was disabled by default. Mac OS X
v10.3 was released in October 2003, and it enables the journal
by default. Therefore, the recovery technique described here is

the most applicable on systems with v10.3 or later installed
and on volumes formatted by v10.3 and later systems.

1.1. The HFSþ file system2

The major components of the HFSþ file system are:

" Volume header – contains file system attributes, such as the
version and the allocation block size, and information to
locate the metadata files.

" Allocation file – tracks the usage status of allocation blocks.
" Catalog file – contains the majority of file and folder

metadata.
" Extents overflow file – contains additional extents records

for files composed of more fragments than can be recorded
in the catalog file.

* Corresponding author.
E-mail address: burghardt_aaron@bah.com (A. Burghardt).

1 With either a command line tool diskutil or the Disk Utility application.
2 A full description of the file system format is provided by Apple in Technote 1150.

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

1742-2876/$ – see front matter ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2008.05.013

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2

" Attributes file – extensible metadata; it is used for features

such as access control lists and Time Machine.
" Journal file

The catalog, extents overflow, and attributes files are all
instances of a B-tree storage system (Sedgewick, 1990). Only
the catalog file is considered in detail here.

1.1.1. The catalog file
The catalog file stores catalog file records and catalog folder
records, which are the primary store of file and folder
metadata, respectively. These records contain:

" Catalog node ID (CNID, a unique unsigned 4-byte integer).
" Timestamps.
" Owner ID.
" Group ID.
" Unix permissions.
" Finder and miscellaneous properties.
" Eight extents records.

An extent record describes the starting block and length in
blocks of contiguous blocks that are part of a single fork of

a single file (i.e., a single fragment of that file). Thus, the eight
extent records in a catalog file record identify the first eight
fragments of the file. Additional extents per file are stored in
the extents overflow file.3

Keys for catalog file and folder records are derived from
CNIDs and file names. Each key contains the CNID of the
parent folder and the name of the file or folder. Using the
parent CNID keeps the contents of a folder grouped together
in the B-tree nodes.4

The catalog file also contains thread records to improve
performance when retrieving a file by CNID. A thread record

key contains the CNID of the file or folder, but no file name.
The data in a thread record is a copy of the key for the file or
folder record. Thread records are useful when constructing
a path to a file system object; given the key for a file or folder
record, the most efficient way to find the key of the parent
folder is to retrieve the thread record for the parent CNID. By
repeating this process recursively until the root is reached,
the full path to the object (relative to the file system’s mount
point) is obtained.

1.2. The difficulty of deleted file recovery

The organization of catalog file data implies that accurate
recovery of deleted files can be achieved if the file record
and its key can be found. Some existing COTS tools take this
approach and employ a scan of the catalog file for deleted
file records as the first step. The results of these utilities are
often limited to one or two files or no files at all.

This approach is ineffective because the catalog file is not
just an index of another data structure; the indexed data is
stored within the catalog file. When a file is deleted, the

B-tree must be updated to maintain consistency, which may

overwrite the deleted file record. In HFS, these updates were
performed in a way that occasionally did not erase the record
in the B-tree node corresponding to a deleted file. In HFSþ,
B-tree nodes appear to be updated as a logical unit. In our
research, we found that the slack/unused portions of B-tree
nodes were consistently filled with 0x00.

1.3. The journal’s role

An individual update to the file system, from the user’s
perspective, may result in several related disk updates. Creat-

ing a file, for example, may trigger the following changes:

" File and thread records inserted into one catalog file node
(which may cascade into several nodes requiring updates).
" The Volume Bitmap file is updated to reflect that the file’s

content blocks are now in use.
" Records are inserted in the extents overflow if the file is

highly fragmented.
" The attributes file is updated if additional attributes are

applied.
" The volume header is updated to reflect activity.

All of these updates must be completed or the file system
will be corrupted. A power outage or premature removal of
an external disk or flash drive is an example where the file
system may be interrupted while critical updates are in
progress. Journaling was added to HFSþ to address this
problem. The steps in a transaction are:

1. Start the transaction by writing a copy all pending file
system metadata changes to the journal file.

2. Flush the journal file to disk.

3. Record the presence of the transaction in the journal
header.

4. Perform the changes on the actual file system metadata
files.

5. Mark the transaction in the journal as completed by updat-
ing the journal header.5

When a file system is mounted, HFSþ checks the journal
for uncommitted transactions. If the transaction did not reach
step 3 above, then the changes are lost, but the file system is
still consistent. If step 3 completed successfully but step 5

did not, then the entire transaction is replayed, ensuring file
system consistency.

1.4. The journal file

The journal file is allocated as a contiguous set of blocks on the
file system and is never moved or resized. The journal file is
implemented as a circular buffer of a fixed size. The beginning
of the journal file is the journal header; the remainder of the file
is the circular journal buffer. Journaled data is continuously

3 In practice, only 1–2% of the files of a typical Mac OS X volume
will have records in the extents overflow file (Singh, 2006; Singh).

4 This is a performance optimization for common user tasks,
such as displaying or searching the contents of a folder.

5 There is no need to flush the journal header to disk at this
point; disconnecting the disk and leaving the file system dirty
will result in a replay of the transaction on the next mount, but
that is not incorrect, only redundant.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2 S77

appended to the file until the end of the buffer is reached. Then,

data is written to the beginning of the buffer (skipping over the
journal header) again, overwriting old data as it proceeds.

A transaction consists of one or more block lists. A block
list consists of a block list header, which describes the blocks
in the list, followed by the block data. The block list header is
of fixed size. Thus, a transaction may require more than one
block list to record all the blocks.

The journal has no inherent knowledge of the file system; it
does not contain information about the volume header,
catalog file, etc. Rather, it operates at the disk block level:
a transaction is simply a collection of disk blocks to be

updated. A recovery utility must be able to interpret the blocks
for relevant data.

2. Methodology

The deleted file recovery methodology takes advantage of the
design and implementation of the journaling to find catalog
file records that represent files that have been deleted from
the file system. The journal file contains a copy of all of the
blocks that are updated in a given transaction, and the
contents of the journal file are not erased until the buffer
wraps around and overwrites completed transactions. By

inference, the journal file will contain copies of catalog file
nodes and some of the files within those nodes may no longer
exist in the active catalog file (i.e., they are deleted).

2.1. Accessing the catalog file

As a prerequisite to implementing this approach, the
following subset of HFSþ file system functionality was
implemented:

" Given a file record, calculate the location of allocation blocks
and read the contents of the file.
" Retrieve B-tree nodes from the catalog file.
" Retrieve records from a B-tree node.
" Perform an HFSþ-compliant catalog file key comparison.
" Perform an HFSþ-compliant catalog file key search.

2.2. Employing the HFSþ journal for file recovery

Once the HFSþ volume and journal concepts are understood, an
algorithm for recovering deleted files is straightforward. The
implementation of the algorithm included the following steps:

1. Read the volume header.
2. Initialize catalog file access based on information in the

volume header.
3. Derive the location of the journal file using the volume

header and the journal info block.
4. Read journal file into memory (starting at the oldest trans-

action, not the beginning of the file).
5. Scan the in-memory copy of the journal file:

(a) Examine blocks sequentially and identify copies of
catalog file B-tree nodes. A node does not have a signa-
ture value, but it does have several values that can be
checked for consistency and sanity.

(b) When a catalog file node is identified, iterate over the re-

cords stored within. For each record, search the active
catalog file for the record. If it isn’t found, infer that it
is deleted.

(c) If a record for a deleted file is found, store it in a cache. If
the cache contains the record, discard it. (Thus, only the
most recent version will be used.)

6. Determine the recoverability potential of deleted files.

2.3. Determining recovery potential

The scoring algorithm that we developed is based entirely on
the status of the allocation bits in the Volume Bitmap file cor-
responding to each deleted file. For each block once occupied
by a deleted file, a check of the corresponding bit in the
Volume Bitmap is performed to ascertain whether it is
currently in use by another file. Three possibilities are identi-
fied below with a weighted description:

Good. None of the blocks are in use (the contents are probably
recoverable).

Partial. Some of the blocks are in use (the value of recovery
depends on the file type).
Poor. All of the blocks are in use (and of limited value, though
some data may exist in slack space).

For all of these cases, a block that corresponded to a deleted
file and is unallocated at the time that the recovery is
performed does not necessarily contain the residual data
from the deleted file. In fact, the block could have been reused
any number of times between the time that the file was
deleted and the recovery was performed, and may contain

data that is not associated with the referenced file. In all cases,
there may still be value in recovering the file blocks so that the
slack space (i.e., the data bytes that reside between the logical
end of a file and the end of the block in which the end of file is
contained) may be examined.

A partially recoverable file is the most complex case and
requires the most thorough consideration. The best option
depends on the intended use of the data. Our implementation
provides three options for files with partial and poor recover-
ability. They are:

Stop At In-use. This option recovers all blocks that are not in use
up to the first in-use block, at which point it stops and does not
attempt to copy any later blocks, whether in use or not.
Intact. All of the blocks are recovered as-is, including both
allocated and unallocated blocks.
Zeroing. All of the blocks are recovered, but the blocks that are
marked as allocated are filled with 0x00. This option is
provided so that all unallocated fragments are recovered and
confusion from inter-mixed data is avoided.

2.4. Additional reliability criteria

Additional analysis could be performed to enhance the
accuracy of the recovery potential. For example, transactions
in the journal do not have a timestamp, but the transactions

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2S78

are chronological and any additional changes to the catalog file
are recorded. Therefore, once a deleted file record is identified,

it is possible to scan subsequent transactions to determine if
any later updates affect the same allocation blocks that the de-
leted file occupied. If none were found, then the recovery po-
tential could be considered absolute rather than ‘‘Good.’’

3. Empirical analysis

To assess the viability of our technique, some samples were
taken to gauge the frequency with which the journal wraps
and overwrites historical data. Ultimately, a utility that imple-
ments the technique was written and deployed and a sample

of the results is provided in the following subsections.

3.1. Journal wrapping frequency

A component of our analysis was a risk assessment to address
the concern that updates to log files and other file system ‘‘chat-
ter’’ may reduce the window of opportunity and render the

technique of little value. To gather data, a small utility polled
the active journal start point every 2 s and reported when the

journal buffer wrapped. We anticipated that the pattern of
usage of the system boot volume would differ significantly
from other mounted volumes, so samples were taken of both.

Our test platforms were an Intel Mac mini Core Duo and
a MacBook Pro Core Duo, which are described in Tables 1
and 2, respectively. The machines were monitored for about
8 h during which typical user tasks were performed, such as
web browsing, reading email, and editing documents. Mail
on the MacBook Pro was configured with five email accounts,
checked email every 5 min, and received and filed approxi-
mately 200 emails during the monitored period.

The data was collected and the time interval between each
journal wrapping event was calculated. Fig. 1 shows the distri-
bution of the number of journal wrapping events per time in-
terval, with time intervals grouped by the 100. Some key
observations include:

" Four volumes were monitored on the Mac mini, but only the
boot volume had any occurrences of the journal wrapping.
" The journal file of the Mac mini’s boot volume typically

wrapped after a 5–10 min interval, but the journal file of
the MacBook Pro’s boot volume typically wrapped after

about a 30-min interval.

Table 1 – Test Platform: Mac mini

Mac mini

OS Mac OS X v10.5

Volumes disk0s2: Boot volume
disk1s2: External firewire
disk2s2: External firewire
disk5: Disk image

Open applications Preview
TextEdit
Terminal
Console
Xcode
Interface Builder
Numbers
Calculator
Safari
TeXShop

Table 2 – Test Platform: MacBook Pro

MacBook Pro

OS Mac OS X v10.5

Volumes disk0s2: Boot volume
disk2s2: External firewire
(Time Machine enabled)

Open Applications Mail
Preview
TextEdit
Terminal
Console
Xcode
Interface Builder
Calculator
Safari
Pages
Microsoft Word

0

10

20

30

40

0-
99

30
0-

39
9

60
0-

69
9

90
0-

99
9

12
00

-1
29

9

15
00

-1
59

9

18
00

-1
89

9

21
00

-2
19

9

24
00

-2
49

9

27
00

-2
79

9

30
00

-3
09

9

33
00

-3
39

9

Time Interval (sec)

Mac mini: Boot
MacBook Pro: Boot
MacBook Pro: Time Machine

Fig. 1 – Journal wrapping occurrences per time interval.

Table 3 – Recovery Potential Analysis Summary

Volume Good Partial Poor Total

MBP: disk0s2 59 0 8 67
MBP: disk2s2 3 0 0 3
Mini: disk0s2 10 0 4 14
Mini: disk1s2 32 0 87 119
Mini: disk2s2 14 0 22 36
Mini: disk5 141 0 21 162

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2 S79

T
ab

le
4

–
Fi

le
re

co
v

er
y

sc
re

en
sh

o
t

Fi
le

n
am

e
Po

te
n

ti
al

D
at

a
si

ze
R

sr
c

si
ze

C
N

ID
C

re
at

e
d

at
e

M
o

d
ifi

ca
ti

o
n

d
at

e
A

cc
es

s
d

at
e

Pa
th

in
d

ex
G

o
o

d
1.

17
7

0
28

21
22

20
08

-0
3-

12
,

12
:3

8
20

08
-0

3-
12

,
12

.3
8

20
08

-0
3-

12
,

12
.3

8
/D

o
cu

m
en

ts
/D

FR
W

S
/.

gi
t/

in
d

ex
m

as
te

r
G

o
o

d
41

0
28

08
95

20
08

-0
3-

10
,

04
:1

5
20

08
-0

3-
10

,
04

:1
5

20
08

-0
3-

12
,

13
:5

4
/D

o
cu

m
en

ts
/D

FR
W

S
/.

gi
t/

re
fs

/h
ea

d
s/

m
as

te
r

in
d

ex
G

o
o

d
11

77
0

28
21

23
20

08
-0

3-
12

,
12

:4
1

20
08

-0
3-

12
,

12
:4

1
20

08
-0

3-
12

,
12

:4
1

/D
o

cu
m

en
ts

/D
FR

W
S

/.
gi

t/
in

d
ex

Jo
u

rn
al

R
ec

o
ve

ry
.t

ex
t

G
o

o
d

23
,7

33
0

28
21

25
20

08
-0

3-
12

,
13

:1
7

20
08

-0
3-

12
,

13
:1

7
20

08
-0

3-
12

,
13

:1
7

/D
o

cu
m

en
ts

/D
FR

W
S

/J
o

u
rn

al
R

ec
o

ve
ry

.t
ex

Jo
u

rn
al

R
ec

o
ve

ry
.t

ex
t

Pa
rt

ia
l

23
,7

33
0

28
21

26
20

08
-0

3-
12

,
13

:1
8

20
08

-0
3-

12
,

13
:1

8
20

08
-0

3-
12

,
13

:1
8

/D
o

cu
m

en
ts

/D
FR

W
S

/J
o

u
rn

al
R

ec
o

ve
ry

.t
ex

Jo
u

rn
al

R
ec

o
ve

ry
.t

ex
t

Po
o

r
23

,7
33

0
28

21
27

20
08

-0
3-

12
,

13
:1

9
20

08
-0

3-
12

,
13

:1
9

20
08

-0
3-

12
,

13
:1

9
/D

o
cu

m
en

ts
/D

FR
W

S
/J

o
u

rn
al

R
ec

o
ve

ry
.t

ex
Jo

u
rn

al
R

ec
o

ve
ry

.t
ex

t
Pa

rt
ia

l
21

,1
19

0
28

21
29

20
08

-0
3-

12
,

13
:1

9
20

08
-0

3-
12

,
13

:2
4

20
08

-0
3-

12
,

13
:2

4
/D

o
cu

m
en

ts
/D

FR
W

S
/J

o
u

rn
al

R
ec

o
ve

ry
.t

ex
in

d
ex

G
o

o
d

11
77

0
28

21
32

20
08

-0
3-

12
,

13
:5

4
20

08
-0

3-
12

,
13

:5
4

20
08

-0
3-

12
,

13
:5

4
/D

o
cu

m
en

ts
/D

FR
W

S
/.

gi
t/

in
d

ex
A

b
o

u
t

B
D

A
li

as
þ

w
o

lf
.

G
o

o
d

73
7

0
27

88
79

20
07

-0
4-

08
,

2:
56

20
07

-0
4-

08
,

02
:5

6
20

08
-0

3-
04

,
16

:3
5

/O
rp

h
an

d
ed

/A
b

o
u

t
B

D
A

li
as
þ

w
o

lf
.r

tf
A

b
o

u
t

B
D

A
li

as
.r

tf
G

o
o

d
41

34
0

27
88

80
20

07
-0

4-
08

,
02

:5
5

20
07

-0
4-

08
,

02
:5

5
20

08
-0

3-
04

,
16

:3
5

/O
rp

h
an

d
ed

/A
b

o
u

t
B

D
A

li
as

.r
tf

u
se

r.
st

y
G

o
o

d
32

04
0

28
08

11
20

08
-0

2-
03

,
17

:2
1

20
08

-0
2-

07
,

18
:3

7
20

08
-0

3-
09

,
21

:4
6

/O
rp

h
an

d
ed

/u
se

r.
st

y
B

D
A

li
as

.h
G

o
o

d
37

12
0

27
88

81
20

07
-0

4-
08

,
02

:5
5

20
07

-0
8-

27
,

00
:1

2
20

08
-0

3-
10

,
04

:2
1

/O
rp

h
an

d
ed

/B
D

A
li

as
.h

B
D

A
li

as
.m

G
o

o
d

15
,1

83
0

27
91

36
20

07
-0

4-
09

,
14

:2
2

20
08

-0
2-

25
,

10
:4

0
20

08
-0

3-
10

,
04

:2
1

/O
rp

h
an

d
ed

/B
D

A
li

as
.m

B
D

A
li

as
.r

tf
G

o
o

d
60

95
0

27
88

83
20

07
-0

4-
08

,
02

:5
5

20
07

-0
4-

08
,

02
:5

5
20

08
-0

3-
04

,
16

:3
5

/O
rp

h
an

d
ed

/B
D

A
li

as
.r

tf
D

FR
W

S
O

u
tl

in
e.

d
o

c
G

o
o

d
25

,0
88

0
28

08
12

20
08

-0
1-

08
,

15
:4

4
20

08
-0

1-
08

,
15

:4
4

20
08

-0
3-

09
,

21
:4

6
O

rp
h

an
d

ed
/D

FR
W

S
O

u
tl

in
e.

d
o

c
u

se
r.

m
o

d
e1

v3
G

o
o

d
47

,7
75

0
28

19
45

20
08

-0
3-

10
,

23
:2

7
20

08
-0

3-
10

,
23

:2
7

20
08

-0
3-

10
,

23
:2

7
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/U

b
er

U
ti

li
ty

.x
co

d
ep

ro
j/

u
se

r.
m

o
d

e1
v3

u
se

r.
p

b
x

u
se

r
G

o
o

d
40

,5
03

0
28

19
47

20
08

-0
3-

10
,

23
:2

7
20

08
-0

3-
10

,
23

:2
7

20
08

-0
3-

10
,

23
:2

7
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/U

b
er

U
ti

li
ty

.x
co

d
ep

ro
j/

u
se

r.
p

b
x

u
se

r
p

ro
je

ct
.p

b
x

p
ro

j
G

o
o

d
29

,1
11

0
28

19
46

20
08

-0
3-

10
,

23
:2

7
20

08
-0

3-
10

,
23

:2
7

20
08

-0
3-

10
,

23
:2

7
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/U

b
er

.U
ti

li
ty

.x
co

d
ep

ro
j/

p
ro

je
ct

.p
b

x
p

ro
j

D
is

k
lm

ag
eE

x
p

o
rt

er
.m

G
o

o
d

52
25

0
28

19
49

20
08

-0
3-

10
,

10
:5

4
20

08
-0

3-
10

,
23

:3
2

20
08

-0
3-

10
,

23
:3

2
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/S

o
u

rc
e/

D
is

k
lm

ag
eE

x
p

o
rt

er
.m

in
d

ex
G

o
o

d
11

77
0

28
08

74
20

08
-0

3-
10

,
04

:1
5

20
08

-0
3-

10
,

04
:1

5
20

08
-0

3-
10

,
04

:1
5

/D
o

cu
m

en
ts

/D
FR

W
S

/.
gi

t/
in

d
ex

cl
as

se
s.

n
ib

G
o

o
d

77
2

0
28

17
94

20
08

-0
3-

10
,

13
:4

3
20

08
-0

3-
10

,
13

:4
3

20
08

-0
3-

10
,

23
:4

8
o

rp
h

an
ed

/c
la

ss
es

.n
ib

in
fo

.n
ib

G
o

o
d

58
2

0
28

17
95

20
08

-0
3-

10
,

13
:4

3
20

08
-0

3-
10

,
13

:4
3

20
08

-0
3-

10
,

23
:4

8
O

rp
h

an
ed

/i
n

fo
.n

ib
K

ey
ed

o
b

je
ct

s.
n

ib
G

o
o

d
19

,2
15

0
28

17
96

20
08

-0
3-

10
,

13
:4

3
20

08
-0

3-
10

,
13

:4
3

20
08

-0
3-

10
,

23
:4

8
O

rp
h

an
ed

/K
ey

ed
o

b
je

ct
s.

n
ib

u
se

r.
m

o
d

e1
v3

G
o

o
d

47
,1

61
0

28
19

01
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/U
b

er
U

ti
li

ty
.x

co
d

ep
ro

j/
u

se
r.

m
o

d
e1

v3
u

se
r.

p
b

x
u

se
r

G
o

o
d

61
,9

13
0

28
19

03
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/U
b

er
U

ti
li

ty
.x

co
d

ep
ro

j/
u

se
r.

p
b

x
u

se
r

p
ro

je
ct

.p
b

x
p

ro
j

G
o

o
d

29
,1

11
0

28
19

02
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/U
b

er
U

ti
li

ty
.x

co
d

ep
ro

j/
p

ro
je

ct
.p

b
x

p
ro

j
u

se
r.

m
o

d
e1

v3
G

o
o

d
44

,3
11

0
28

19
04

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
/M

yp
ro

je
ct

/R
es

ea
rc

h
T

o
o

ls
/R

es
ea

rc
h

T
o

o
ls

.x
co

d
ep

ro
j/

u
se

r.
m

o
d

e1
v3

u
se

rp
b

x
u

se
r

G
o

o
d

20
,7

59
0

28
19

06
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

/M
yp

ro
je

ct
/R

es
ea

rc
h

T
o

o
ls

/R
es

ea
rc

h
T

o
o

ls
.x

co
d

ep
ro

j/
u

se
r.

p
b

x
u

se
r

p
ro

je
ct

.p
b

x
p

ro
j

G
o

o
d

27
,1

80
0

28
19

05
20

08
-0

3-
10

,
16

:4
6

20
08

-0
3-

10
,

16
:4

6
20

08
-0

3-
10

,
16

:4
6

/M
yp

ro
je

ct
/R

es
ea

rc
h

T
o

o
ls

/R
es

ea
rc

h
T

o
o

ls
.x

co
d

ep
ro

j/
p

ro
je

ct
.p

b
x

p
ro

j
S

p
ar

eB
lo

ck
.m

G
o

o
d

46
1

0
28

19
08

20
08

-0
2-

20
,

05
:1

5
20

08
-0

3-
10

,
16

:5
4

20
08

-0
3-

10
,

16
:4

6
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/S

o
u

rc
e/

S
p

ar
eB

lo
ck

.m
M

yD
o

cu
m

en
t.

h
G

o
o

d
42

1
0

28
17

84
20

08
-0

2-
19

,
15

:2
0

20
08

-0
3-

10
,

13
:4

1
20

08
-0

3-
10

,
23

:5
9

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/S
o

u
rc

e/
M

yD
o

cu
m

en
t.

h
M

yD
o

cu
m

en
t.

m
G

o
o

d
38

83
0

28
18

03
20

08
-0

2-
19

,
15

:2
0

20
08

-0
3-

10
,

13
:4

3
20

08
-0

3-
11

,
00

:2
0

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/S
o

u
rc

e/
M

yD
o

cu
m

en
t.

m
M

yD
o

cu
m

en
tW

in
d

o
w

G
o

o
d

72
5

0
28

17
86

20
08

-0
2-

23
,

21
:1

0
20

08
-0

3-
10

,
13

:4
1

20
08

-0
3-

11
,

00
:3

5
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/S

o
u

rc
e/

M
yD

o
cu

m
en

tw
in

d
o

w
C

o
n

tr
o

ll
er

.h
M

yD
o

cu
m

en
tW

in
d

o
w

G
o

o
d

63
40

0
28

17
88

20
08

-0
2-

23
,

21
:1

0
20

08
-0

3-
10

,
13

:4
1

20
08

-0
3-

11
,

00
:2

0
/M

yp
ro

je
ct

/M
yU

ti
li

ty
/S

o
u

rc
e/

M
yD

o
cu

m
en

tw
in

d
o

w
C

o
n

tr
o

ll
er

.m
D

is
k

lm
ag

eE
x

p
o

rt
er

.m
G

o
o

d
52

04
0

28
18

92
20

08
-0

3-
10

,
10

:5
4

20
08

-0
3-

10
,

16
:3

6
20

08
-0

3-
10

,
23

:3
1

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/S
o

u
rc

e/
D

is
k

lm
ag

eE
x

p
o

rt
er

.m
Pa

rs
er

.h
G

o
o

d
93

6
0

28
06

02
20

08
-0

2-
19

,
15

:4
8

20
08

-0
3-

05
,

05
:4

0
20

08
-0

3-
11

,
08

:5
0

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/S
o

u
rc

e/
Pa

rs
er

.h
u

se
r.

p
b

x
u

se
r

G
o

o
d

62
,2

64
0

28
19

10
20

08
-0

3-
10

,
16

:5
5

20
08

-0
3-

10
,

16
:5

5
20

08
-0

3-
10

,
16

:5
5

/M
yp

ro
je

ct
/M

yU
ti

li
ty

/U
b

er
U

ti
li

ty
.x

co
d

ep
ro

j/
u

se
r.

p
b

x
u

se
r

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2S80

" The journal file on the Time Machine volume of the Mac-

Book Pro regularly wrapped in 20–60 s, but never less than
20 s, while a backup was in process. When a backup was
not in progress, it did not wrap.

3.2. Recovery potential analysis

Our implementation of this journal-based method was used
to analyze the volumes described in Section 3.1. A summary
of these results is presented in Table 3. In our research, we

observed that files with a partial recovery potential were
uncommon; in the results presented in Table 3, none were
identified.

3.3. A real-world example

Table 4 was generated with data from a utility that imple-
ments our technique. The file system is a flash drive used by
the author during preparation of this paper. In this case, 120
instances of deleted files were found in the journal file, though

only a subset of data is shown. The table illustrates the
detailed metadata that is recovered using this approach.

3.4. Limitations

Using the journal file for recovering deleted files as described
in this paper has inherent limitations:

" The journal file is a circular buffer, so the history is limited
by the frequency at which the buffer wraps. In our experi-

ence, this time-frame can range from a few minutes on
an active boot volume to several hours on secondary
volumes.
" The potential to recover a deleted file – even one that is

recently deleted – is not guaranteed. When a catalog file
node is updated after a file is deleted, an old copy of the
node is not written to the journal file; only the new version
of a node is written, and the new version does not contain
the file record. Thus, previous file system activity must
have occurred to cause the file record to be written to the
journal prior to deletion. Opening a file or moving it to the

trash may trigger this activity, as can an update on
a different file whose record happens to be in the same
B-tree node.
" The full path of the file may not be retrievable. The path is

constructed recursively, so if any of the file’s parent folders
has been deleted, attempting to reconstruct the path may
fail, in which case the file is orphaned.
" Shadow files may mask potential results. A common

approach to Mac forensics is to use dd to make an image
of a disk. Next, hdiutil is used with the shadow option to
attach the image, which creates /dev/disk* and /dev/rdisk*
device entries, and mount the file systems in the image.

The shadow file protects the original image file from
modification by allowing write access to the attached
device, but the writes are recorded in a separate file rather
than the original image file. On subsequent reads, if the
block to be read is in the shadow file, the block from the
shadow file is returned rather than the original block from

the image file. This is done without the file system’s knowl-

edge and allows it to mount file systems that it otherwise
would not.

When a shadow file is used, however, the /dev entries are
available as read/write devices, not write-protected or read-
only (the image file is read-only, but not the device entry). If
the record for a deleted file is in a section of the journal file
that is overwritten when the file system is mounted, the file
record will no longer be recoverable because the file recov-
ery implementation will see the updated version of the jour-
nal file, not what is in the disk image. Therefore, if
a recovery utility uses the /dev/disk* or /dev/rdisk* device

to access an attached disk image, the disk should be at-
tached without a shadow file and without mounting the
file system.
" The time when a file was deleted is not known.
" Fragmented files which have extents records in the

extents overflow file impose an additional obstacle. The
extent records (i.e., fragments) stored in the extents
overflow are managed separately from the catalog file
records, so it is possible that a deleted catalog file record
is found, but associated extents overflow records are not
found. In this scenario, only the first eight fragments

can be recovered.
" While an allocation block may be free at the time of recov-

ery, it may have been allocated and unallocated a number
of times between the time the corresponding file was
deleted and recovered.

4. Summary

Our research has identified a viable method to detect and
recover deleted files on HFSþ file systems that have journal-
ing enabled, and provides a useful complement to estab-
lished techniques and tools. Recovery of the file contents
can be performed with more accuracy than other file carving
techniques because the exact range of allocation blocks is
known. The method is successful even if the allocation
blocks are separated into multiple fragments – a situation
that many other techniques do not take into account. Empir-

ical results of our testing consistently identify dozens of
potential files for recovery. Additionally, for each file recov-
ered, important metadata like the file name and timestamps
are also recovered.

An important limitation of our approach is the limited
duration of recorded transactions within the journal file
(i.e., the journal’s circular buffer frequently wraps, overwrit-
ing its oldest history). Moreover, not all deleted files will be
recoverable because the technique is dependent on another
independent file system event to write a reference to the file
into the journal file.

r e f e r e n c e s

Apple. Technical note TN1150: HFS plus volume format. http://
developer.apple.com/technotes/tn/tn1150.html.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2 S81

Sedgewick Robert. Algorithms in C. Addison-Wesley Professional;
January 1990.

Singh Amit. hfsdebug: a debugger for hfs plus volumes. http://
www.kernelthread.com/software/hfsdebug.

Singh Amit. Mac Os X internals: a systems approach. Addison-
Wesley Professional; June 2006.

Aaron Burghardt is employed as a consultant for Booz Allen
Hamilton. His primary focus has been development of special-
ized Macintosh forensic tools.

Adam Feldman has 22 years of professional and engineering

services and management experience in the areas of informa-
tion and computer security, software engineering, and investi-
gative technologies - including computer forensics and digital
data and text analysis. Currently, he provides technical and
strategic direction, business development, and thought leader-
ship for several investigative technologies and data analytics
initiatives, as well as program management for computer foren-
sics and text analytics projects for federal government clients.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 7 6 – S 8 2S82

