
DIGITAL FORENSIC RESEARCH CONFERENCE

Key-Hiding On The ARM Platform

By

Alexander Nilsson, Marcus Andersson and Stefan Axelsson

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2014 EU 

Amsterdam, NL (May 7th - 9th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics 

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an 

informal environment. 

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, 

annual conferences and challenges to help drive the direction of research and 

development. 

http:/dfrws.org



Key-hiding on the ARM platform

Alexander Nilsson, Marcus Andersson, Stefan Axelsson*

Blekinge Institute of Technology, Sweden

Keywords:
Cold-boot
Cryptography
Computer architecture
ARM

a b s t r a c t

To combat the problem of encryption key recovery from main memory using cold boot-
attacks, various solutions has been suggested, but most of these have been implemented
on the x86 architecture, which is not prevalent in the smartphone market, where instead
ARM dominates.
One existing solution does exist for the ARM architecture but it is limited to key sizes of 128
bits due to not being able to utilise the fullwidth of the CPU registers used for key storage.We
developed a test-implementation of CPU-bound key storage with 256-bit capacity, without
using more hardware resources than the previous solution. We also show that access to the
key can be restricted for programs executing outside the kernel space.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Today, Full Disk Encryption (FDE) is available onmodern
mobile devices running OS:es such as iOS, Android and
Windows Phone. Android is the most commonly used
Operating system (Adamo, 2013), and as of version 4.0, FDE
can be enabled provided the user uses a PIN or alpha-
numeric password.

When physical access to a device is available attacks
such as cold boot-attacks can be performed (Halderman
et al., 2009; Müller et al.) on the device in order to ac-
quire the disk encryption key from main memory (RAM).
Several ways to mitigate such attacks has been suggested
(Müller et al., 2010; Müller et al., 2011; Simmons, 2011)
however many of these are specific to the x86 architecture.
Only one approach, called ARMORED, has focused on the
ARM architecture (Götzfried and Müller).

Our work investigates the feasibility of extending solu-
tions, such as ARMORED, to use key-sizes of up to 256-bits.
The operating system that is being studied is Android 4.0.3
but primarily it is its Linux kernel (version 2.6.39.4 on our
device) that is of importance.

In Section 2 we explore the related work done in this
area (as stated, mainly on the x86 architecture), followed by
our contributions. The technical details of our imple-
mentation is described in Section 3. In Section 4 we present
our testing methods and the results of these tests. Sections
5 and 6 contain the conclusions and suggested future work
respectively.

Background

Related work

Cold Boot-attacks (Halderman et al., 2009) are attacks
against FDE solutions that aim to recover encryption keys
from memory. They are possible due to the fact that
memory content fades away slower the colder the RAM
chips are. This makes it possible to reboot a computer
without losing too much information and boot into an
operating system which can read out the memory content.

FROST (Müller et al.) is a forensic tool that can recover
encryption keys frommemory on smartphones running the
Android operating system with FDE enabled. Encryption
keys are read from memory by performing a cold boot-
attack on the smartphone and then flashing the FROST
image onto the device which can then recover the
encryption keys and decrypt the encrypted data partitions.

* Corresponding author.
E-mail addresses: alex.caelus@gmail.com (A. Nilsson), mban009@

gmail.com (M. Andersson), stefan.axelsson@bth.se (S. Axelsson).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2014.03.008
1742-2876/ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/3.0/).

Digital Investigation 11 (2014) S63–S67

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:alex.caelus@gmail.com
mailto:mban009@gmail.com
mailto:mban009@gmail.com
mailto:stefan.axelsson@bth.se
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.03.008&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.03.008
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.diin.2014.03.008


AESSE (Müller et al., 2010) is a ”cold boot”-resistant
implementation of AES for the Linux operating system on
the x86 architecture. To prevent encryption keys from
being acquired during memory attacks such as the cold
boot-attack AESSE never stores keys in memory, but instead
stores them directly in the SSE registers of the processor.
AESSE also makes sure that no intermediate encryption
state ever leaves the processor which would compromise
the security of the implementation. However the security
provided by AESSE comes at a high performance cost which
makes it less attractive in practice.

TRESOR (Müller et al., 2011) (German for safe or vault) is
the successor to AESSE and employs the same general
principles as AESSE with substantially improved perfor-
mance. Instead of using SSE registers for key storage, which
caused a lot of compatibility problems, TRESOR uses the
debug registers present in the x86 architecture. To increase
the performance of the solution the Intel AES-NI instruction
set for hardware accelerated encryption is used, which
makes the implementation perform on par, or better than,
the standard AES implementation, despite the fact that
using CPU-registers precludes the common performance
enhancing technique of performing (round) key expansion/
key scheduling in main memory and reuse the expanded
keys in subsequent encryption/decryption of blocks using
the same key.

LoopAmnesia (Simmons, 2011) is a solution very similar
to TRESOR, but instead of using debug registers Loop-
Amnesia uses performance counter registers. Another dif-
ference is that LoopAmnesia does not use the Intel AES-NI
instruction set which makes the implementation slower
than TRESOR and the standard AES implementation.

ARMORED (Götzfried and Müller) is an adaptation of
TRESOR to the ARM architecture and the Android operating
system. Due to technical limitations in the debug registers,
only 128-bit encryption keys are supported by ARMORED,
but since Android is currently limited to 128-bit keys for its
disk encryption this was considered sufficient by the au-
thors, and they did not further investigate whether these
technical limitations could be addressed.1

Our contribution

Our contribution is an improvement of the storage so-
lution employed in ARMORED, allowing us to store keys
that are 256 bits in length. This was motivated by the
following passage by Götzfried and Müller, where they
discuss the drawback of not being able to use the full reg-
ister width for key storage, limiting their maximum key
size to 128 bits instead of 256 bits:

“[Regarding ARM breakpoint registers] But unlike the
debug registers in 64-bit x86 CPUs, they are too small to
hold AES-256 keys. (Note that debug registers can be
written into RAM due to context switching as well, but
we specifically prohibit that by patching respective
kernel routines.)

On ARM, the least significant two bits of each 32-bit
break- and watchpoint register are necessarily zero
due to the memory alignment in ARM. Since in-
structions are consistently 32-bit wide, they are always
located at 4-byte aligned addresses. Hence, the least
significant two bits are omitted for setting break- and
watchpoints because they must be zero anyway. As a
consequence, these bits are not available as key storage
[Our emphasis]. For the sake of convenience, we divided
the key-sequence into 16-bit chunks; specifically, we
use four breakpoint and four watchpoint registers, giv-
ing us a total of 8.16 ¼ 128 bits as key storage. This is
enough to accommodate AES-128, but not enough to
accommodate AES-256. However, since Android’s
encryption feature is based on AES-128, this does not
pose a problem.

In future releases we could store more than 16 bits per
register, and if we find additional break- and watchpoint
registers, we could accommodate AES-256.”

This passage piqued our interest as to whether it would
be possible to solve the problem of storing 256-bit AES-
keys without having to use any additional break- and
watchpoint registers.

The technical details of this part of the ARM architec-
ture are as follows: the debug registers on the ARM ar-
chitecture consist of four different kinds of registers;
breakpoint value registers, breakpoint control registers,
watchpoint value registers and watchpoint control registers.
For each breakpoint or watchpoint value register there is a
corresponding control register that controls the use of
each value register.

The problem that prevented ARMORED from storing
larger keys than 128 bits is the fact that the last two bits in
each value register on the ARM architecturemust be zero as
ARM requires all executable code in memory to be 32-bit
aligned, hence all instructions start on an address evenly
divisible by four.

To overcome this problem we make use of every value
register’s corresponding control register and store the
remaining two bits there (Fig. 1). This can of course only
work if there are option bits available which can be used
to store arbitrary data, without inadvertently negatively
affecting the flow of execution when written. When
investigating the actual semantics of the option bits in the
control registers, we found that the first and second bit in
both the watchpoint and breakpoint control registers are
arbitrarily read- and writable (unlike most of the other 30
bits). These two bits are originally used for access control,
e.g. controlling which privilege levels that trigger a
breakpoint or watchpoint, but since bit zero has the value
zero the breakpoint or watchpoint is disabled and there-
fore these bit values should not affect execution. Fortu-
nately, our investigation shows that they can indeed be
used freely in practice when the corresponding break-/
watchpoint register is disabled.

To determine the validity of this approach, we created a
system call which reads and writes 256 bits seamlessly to
these registers. In total, four pairs of breakpoint value/
control registers and four pairs of watchpoint value/control
registers were used in the implementation.

1 We would like to stress that we are only stating that this limitation
was not addressed, not that it could not have been addressed.

A. Nilsson et al. / Digital Investigation 11 (2014) S63–S67S64



Implementation

To test our idea we implemented both a system call and
a user space application. We will give a more detailed
description on both of these in Sections 3.1 and 3.2
respectively.

Additionally we must also be able to keep the hardware
debug registers from being read and tampered with by
code running in user space. A more detailed description of
preventing this kind of access is given in Section 3.3.

Code running in kernel space cannot be prevented from
accessing these registers and thus we must keep any ma-
licious user from ever gaining such privilege in the first
place. How to actually keep such privilege escalation from
happening is outside the scope of this paper, a good start
however is to disable Loadable Kernel Modules and the
KMEM device.

In order to test our implementation in as realistic an
environment as possible, we also added a call to our imple-
mentation from the dm-crypt Fruhwitch, 2005 ‘crypto_ci-
pher_setkey’ function which is in turn called by the android
boot process. Additional detail is provided in Section 3.4.

System call

This paper is not intended to be a tutorial on how to
implement a system call in the ARM specific branch of the
Linux kernel, we will however try to give as clear a picture
as we can in order to increase the reproducibility of our
experiments. Hence wewill include a list of all files that we
have touched in order to make the kernel compile the
system call.

arch/arm/include/asm/unistd.h
This file contains a list of all system call numbers, in this

instance the next number available to us was 374 and we
defined it as:

arch/arm/kernel/calls

This file is wherewe actually declare our system call and
provides the linker with the information required in order

to link our system call that we have defined in the following
next file.

We appended the following to the list of system calls:
“CALL(sys_key_research)”

arch/arm/kernel/key_research.c

This is the file we created to house our implementation.
Our system call uses the following prototype:

where mode indicates read or write and data obviously is
the key buffer from/in which to read/write the key.

Below we see a reduced example of the write function
which only stores the first 32 bits of the key. The full
implementation simply duplicates each step for the rest of
the key.

The read function simply does the reverse of the write
function and it is therefore not included in this paper.

Fig. 1. Breakpoint and watchpoint control registers.

A. Nilsson et al. / Digital Investigation 11 (2014) S63–S67 S65



include/linux/key_research.h

In this header file we declare our function and a simple
c-wrapper so that we can call the system call in our user-
space application without using the special swi instruc-
tion. This functionwill be compiled into whatever program
includes this file.

arch/arm/kernel/Makefile

Of course we also had to add the key_research.c file
to the compile process, we did this by simply appending
key_research.o to the object file list (obj-y).

User space application

As stated abovewe also implemented a very simple user
space application that utilises the key_research system
call. There is nothing special about this program; with no
arguments it calls the system call in read mode and prints
the resulting 256-bit value as a hexadecimal string.

If given an argument it writes the value of the argument
(interpreted as a hex string and converted to bytes) to the
debug registers with the system call in write mode.

Prevent access to HW-regs

In order to prevent other user-space programs from
accessing the debug registers we must disable the ptrace

system call’s support of hardware registers (in arch/arm/
kernel/ptrace.c and arch/arm/kernel/hw_break-

point.c). This is done by compiling the kernel with the
configuration variable CONFIG_HAVE_HW_BREAKPOINT

undefined.
To undefine this configuration variable one must edit

the arch/arm/Kconfig file and remove the logic that
overwrites .config with CON-

FIG_HAVE_HW_BREAKPOINT¼y on each compile.
As previously mentioned the above method only dis-

ables access to the debug registers from user space, any
code running under kernel space has complete access to
these registers.

To try and ascertain whether the rest of the kernel
contains any instructions or code that could reference these

registers we performed a grep of the kernel source code.We
found no files other than the ptrace.c, hw_break-
point.c and key_research.c that contain code that
writes or reads from/to these registers.

Adding a key during android bootup

During our experiments we want to have an environ-
ment that emulates a real usage scenario as closely as
possible. With this goal in mind we added a call to our
system call (in write mode) from the include/linux/

crypto.h file, specifically in the crypto_ci-
pher_setkey function.

The above function is called by dm-crypt, which in turn
is called by the android boot-up process if disk encryption
is activated.

Testing & results

Verification of preventing access to HW-regs by code review

To ensure there was no other code in the Linux kernel
that accesses the registers, other than what we have pre-
sented so far, we made a simple search of the entire Linux
kernel’s source code with the following commands:

In the full output we saw a few previously unknown

files that used assembly to write to the same co-processor
(p14) as the debug registers, but upon closer examination
thesewere all false alarms. None of these hits actually write
to our registers of interest.

According to our understanding of the ARM manual
there is no way to access the values of the debug registers
other than using the MCR and MRC instructions, so we feel
relatively confident that there are no other places in the
kernel that accesses these registers other than the two that
were previously mentioned.

Key integrity

In order to test our solution and the integrity of the keys,
we wrote easily distinguishable values into the registers
using our system call and then subjected the device to
usage which would normally write data to the debug reg-
isters. These usage tests included things such as explicitly
setting hardware break and watchpoints with gdb and
general adb usage. After these tests were conducted we
read the debug register values again with our system call
and compared them to the values we had originally written
to them.

During our tests we never managed to overwrite any
key values written into the debug registers. Of course this
does not mean it is not possible to in other ways write data
to the debug registers, but in our tests we feel that we have
covered all normal use cases which concerns debug
registers.

A. Nilsson et al. / Digital Investigation 11 (2014) S63–S67S66



It should be noted that since debuggers in general
cannot rely on an architecture having breakpoint registers,
or that available breakpoint registers may already be
occupied, they will in general work as advertised, typically
using software breakpoints instead of hardware break-
points when they are unavailable.

On-boot key insertion

To test this function we enabled FDE on the device,
which would enable the dm-crypt module we had
modified to run on boot. We then rebooted the device a
number of times and each time read out the value located
in the debug registers. After comparing these values to the
one we specified to be written on boot we found that they
were equal on every occasion and concluded that the on-
boot key insertion function was working properly.

Conclusion

We have demonstrated that it is indeed possible to store
a 256-bit key on the processor chip on the ARMv7 archi-
tecture by using only eight 32-bit break- and watchpoint
registers. We have also determined that it is possible to (a
certain extent) prevent access the key from userspace.
There is however no way of preventing an attacker from
changing or reading out the values if he/she has the means
to inject code into kernel space and execute it.

Therefore we strongly recommend that any imple-
mentation that uses CPU-bound storage of encryption keys
disable LKMs and the KMEM device at minimum. Other
ways of preventing access to the kernel is outside the scope
of this paper.

Future work

More extensive testing and using different kernel ver-
sions and other hardware may be required before any
serious guarantees can be made regarding the security of
CPU-bound key storage used outside the academic
community.

We have not conducted any performance testing of our
solution due to the fact that there is no encryption scheme
that is currently compatible with our prototype imple-
mentation. ARMORED comes the closest but some work is
required to modify our solution to work with theirs. One
way of minimising the work required to conduct

performance testing would be to only utilise the first 128
bits of our key storage solution and thus we would not
require to implement the full 256-bit AES algorithm. The
performance could then be directly compared between the
two key storage solutions. However, as our approach only
adds a small handful of extra instructions to the key setup,
and since the execution time is dominated by the actual
encryption (especially for AES as the number of crypto
rounds increase with increased key lengths), we conjecture
that the impact should be slight.

Since our solution only focuses on the storage of
encryption keys, and not any actual encryption, the next
natural step would be to extend to an already existing so-
lution like ARMORED to support the full 256-bit AES
algorithm.

To make this kind of system applicable in practice a
patch which allows Android to safely derive the key from
the PIN-code/password and write the it to the processor
without leaving any traces in memory is required and we
consider this the next step after applying ARMORED in
either the 128-bit vanilla mode or with 198/256-bit
modification.

Further research is required to make our solution sup-
port the ARMv8 (64-bit) architecture, we feel that this
should not pose a problem however since that architecture
requires the registers to be twice the size of the 32-bit
ARMv7 architecture.

References

Adamo S. Comscore reports july 2013 U.S. smartphone subscriber market
share. Online at, http://www.comscore.com; Sep. 2013. Accessed at
time of publication.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W, Calandrino JA,
et al. Lest we remember: cold-boot attacks on encryption keys.
Communications of the ACM 2009;52(5):91–8.

T. Müller T, M. Spreitzenbarth M, F. C. Freiling FC, . Forensic recovery of
scrambled telephones.

Müller T, Dewald A, Freiling FC. Aesse: a cold-boot resistant imple-
mentation of aes. ACM. In: Proceedings of the Third European
Workshop on System Security; 2010. pp. 42–7.

Müller T, Freiling FC, Dewald A. Tresor runs encryption securely outside
ram. In: USENIX Security Symposium; 2011.

Simmons P. Security through amnesia: a software-based solution to the
cold boot attack on disk encryption. ACM. In: Proceedings of the 27th
Annual Computer Security Applications Conference; 2011. pp. 73–82.

J. Götzfried J, T. Müller T, . Cpu-bound encryption for android-driven arm
devices.

Fruhwirth C. New methods in hard disk encryption. Master’s thesis.
Vienna, Austria: Institute for Computer Languages Theory and Logic
Group Vienna University of Technology; July 2005.

A. Nilsson et al. / Digital Investigation 11 (2014) S63–S67 S67

http://www.comscore.com
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref2
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref2
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref2
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref3
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref3
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref3
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref4
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref4
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref5
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref5
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref5
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref6
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref6
http://refhub.elsevier.com/S1742-2876(14)00013-9/sref6

	Key-hiding on the ARM platform
	Introduction
	Background
	Related work
	Our contribution

	Implementation
	System call
	arch/arm/include/asm/unistd.h
	arch/arm/kernel/calls
	arch/arm/kernel/key_research.c
	include/linux/key_research.h
	arch/arm/kernel/Makefile

	User space application
	Prevent access to HW-regs
	Adding a key during android bootup

	Testing & results
	Verification of preventing access to HW-regs by code review
	Key integrity
	On-boot key insertion

	Conclusion
	Future work
	References


