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from a suspect misses the fact that in centrally controlled networks it is possible to
proactively and continuously collect evidence in advance of any known need. We present
a proof-of-concept for PROOFS, the first proposed continuous forensic evidence collection
Search system that applies information retrieval techniques to file system forensics. PROOFS
File similarity creates and stores signatures for files that are deleted, edited, or copied within such
a network. The heart of each signature is one or more fingerprints, generated based on
statistical properties of file contents, maintaining semantics while requiring as little as
1.06% of the storage space of the original file. We focus on text documents and show that
PROOFS has a high precision of 0.96 and recall of 0.85 with stored fingerprint sizes of less
than 375 bytes. The two contributions of this work are that we show that common
environments exist where proactive collection of forensic evidence is possible and that
we demonstrate an efficient and accurate mechanism for collecting evidence in those
environments.

© 2011 Shields, Frieder & Maloof. Published by Elsevier Ltd. All rights reserved.

1. Introduction even be created; if they are, they may be overwritten or
otherwise lost.
As forensic examinations become more common on

internal networks and the investigative environment

Digital forensic investigations have historically been a reac-
tive measure taken by law enforcement to confirm or refute

a hypothesis about what actions a user performed in the past.
Officers physically seize relevant systems and image them to
ensure preservation of criminal evidence. They later manually
perform an analysis to recover files or file fragments that can
support or refute the investigative premise. Current operating
systems do not purposefully collect and preserve information
specifically to assist in an investigation. Instead, forensic tools
examine recovered files and fragments that exist only as
a side effect of normal system activity. The existence of such
data is dependent on non-deterministic system and user
activity — data that could answer a question may never
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changes, the opportunity arises for proactive collection of
forensic data surrounding questions of violation of organiza-
tional policy, such as IP theft, misuse, or embezzlement.
Focusing on internal networks changes the forensic paradigm
as investigators now have access to systems prior to the time
they are imaged for investigation; there are currently few tools
and little research addressing this shift from a distributed
manual task to a centralized, network one. An organization,
be it corporate or governmental, can install software on its
own systems that continuously and securely preserves
forensic data against future need. This improves investigative
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accuracy in two ways: firstly, it ensures that some relevant
evidence is generated and preserved; and secondly, it allows
storage of that data at a central point in the network, reducing
examination complexity. While there is a cost to maintaining
these forensic data, they can reduce overall costs by providing
a readily available source of evidence to help direct the use of
expensive examiner time. United States law states that
employees have little to no expectation of privacy on organi-
zational equipment, making such collection legal (US v.
Ziegler, 2007).

We present a proof-of-concept for a system named Proac-
tive Object Fingerprinting and Storage (PROOFS). PROOFS is
the first system for proactively collecting evidence that is
designed to answer questions about user actions; it is inten-
ded to be the Google of network investigations. PROOFS
continuously creates and stores object signatures for digital
objects, such as files or email messages, on systems in a cen-
trally controlled network. Each object signature contains
metadata about signature creation and the object as well as
one or more fingerprints that serve to accurately identify the
object while being convenient to store and search. Finger-
prints are created using a novel application of information
retrieval techniques. They are able to match objects across
extensive edits and are searchable by keyword in the case of
textual objects. In this initial proof-of-concept, we focus on
textual fingerprints, but relevant techniques exist for audio,
video, and executables among other file types.

There are two main contributions in this work. First, we
show that environments exist where proactive collection of
forensic evidence is possible. Though proactive collection may
seem a natural progression, it is a major shift from the current
forensic model in which systems are not available to the
investigator until seized; this shift opens a new area for
research and tool development. Second, we demonstrate an
efficient and accurate mechanism for collecting evidence in
those environments and show how it assists common
investigations.

2. Overview

In PROOFS, each computer in the network is modified to create
an object signature when a file is: closed after writing; deleted,;
or copied across file system boundaries. Additionally, entry
and exit points to the network, such as an email server or
proxy server, are modified to produce signatures when an
object transits the domain border. The signatures are securely
written to a centralized forensic database and remain even
when the object used to create them is deleted. This allows
investigation based on file contents even for files that are no
longer anywhere on the network.

When an investigation is needed, the PROOFS forensic
database becomes a valuable resource that can support
a variety of investigations, and the evidence is admissible in
the same way other log file entries are. This database does for
network investigations what Google does for web pages. It
provides a central, searchable resource that is used to guide
the actions of examiners, both providing additional evidence
and allowing focus on specific systems most likely to yield
evidence though further manual examination.

Given even a fragment of a file or other digital object,
PROOFS can identify with high accuracy any system on the
network that ever held a copy of any version of that object. It
can identify who created a document and when and where
they did so. It can help identify which user copied or trans-
mitted the object, when, and to where. Given a set of
keywords, PROOFS can identify which systems in the network
ever held documents that matched those keywords, and can
rank users and systems in order of their frequency of use of
those terms. These activities help direct forensic examiners as
to where to look more deeply, making better use of their
expensive skills.

The cost and accuracy of using PROOFS is related to the size
of the signatures and how accurately they are able to match
the related objects. In this first work, we focus on text docu-
ments and show that PROOFS can return 96% of relevant
documents and that 85% of the documents returned are
matches even when stored fingerprint sizes are fewer than
375 bytes in length. We show that PROOFS is accurate in
matching documents that are edited and contain changes by
using an automated document summarization tool to reduce
documents in word count before creating fingerprints; accu-
racy remains high even when copies retain as few as 40% of
their original words. We further show that source documents
can be matched to fragments that have had as much as 50% of
content deleted before fingerprinting. Our future work
includes developing fingerprints for non-text documents,
including audio, video, and executables.

3. Background

Digital forensic tools were developed in response to an organic
need. Investigators in both civil and criminal cases, as well as
from intelligence agencies, required tools to retrieve infor-
mation from seized computers to help resolve hypotheses
about the past actions and future intentions of the computers’
users. Current forensics tools are very good at retrieving
a wide variety of artifacts that can reflect user actions: existing
files; deleted files, including temporary backup application
files, print spool files, and web and mail cache files; and
operating systems artifacts such as registry entries and file
system metadata (Boyd and Forster, 2004; Buchholz and
Spafford, 2004; Carrier, 2005).

It is important to note that files are copied very frequently
in normal system operation, and that often there are multiple
copies not usually visible to the user. For example, a Word
document that is edited, emailed, and opened within the
network will generate signatures multiple times while being
edited as copies are saved in the background for crash
recovery; when Word is closed the file will be fingerprinted;
any temporary copies made by the sending mail client will be
fingerprinted; it will be fingerprinted at the mail server; fin-
gerprinted upon delivery to the receiving client; and finger-
printed when closed if it is opened in an editable mode for
reading. New examiners are often surprised at the number of
copies left of many files.

However, the existence of data that are not stored as part of
the file system is subject to non-deterministic system activity
that can cause it to be lost. For example, operating system
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updates occur at unpredictable intervals and overwrite
previously deleted files, making their data unavailable to
future examination. Many procedural steps in forensic
response are designed to minimize this type of loss, from
ceasing system use when the need for an investigation
becomes apparent to using write blockers when examining
media. Because forensic tools were developed to deal with
impounded systems, they can only be reactive. It would be
absurd to expect that subjects of external investigations
would install tools in advance to assist an investigation that
might occur at some point in the future; we expect that indi-
viduals would never do so.

As digital forensics has evolved as a discipline, forensic
examinations of computers other than those seized from
a subject have become increasingly common. Organizations
that administer their own computers and network perform
forensic examinations on their own systems in response to
legal demands, reported policy violations, or intrusion detec-
tion alerts (Luoma, 2006). In fact, insider attacks are consid-
ered the most frequent and damaging type of attack (Keeney
et al,, 2005). In these cases, the organization has the control
of a system long before the event that initiates an investiga-
tion and can install proactive forensic collection tools to
continuously collect data to support future investigations.
Because it is organizational equipment, such collection is legal
in the United States.

With proactive data collection loss of data can be pre-
vented. We show that it is possible to capture and maintain
a large amount of useful and relevant information very
cheaply. Storing forensic data at a centralized point also
speeds investigations and thus makes them cheaper. Trained
digital forensic examiners are expensive to hire, with rates
well over $100 per hour in the United States. The cost of col-
lecting and storing data is very low compared to the hourly
cost that would be incurred hiring examiners to recover data
after the fact, particularly for investigations that span
multiple computers across a network.

4. Operating environment and security
analysis

A proactive approach is most effective when the user of the
computer who is a potential subject does not have adminis-
trative access to the system. While this environment is alien
to many academics, it is very common in organizational
settings where an IT department provides and administers
systems for users. To best describe our expected environment
we posit a subject model that is analogous to an attacker model.
We assume:

e The subject does not administer the system they use.

e The system has software installed the user cannot stop or
modify.

e The system does not include software that can thwart data
collection.

e The subject cannot install their own software.

If encryption is needed, full disk encryption with organiza-

tional key escrow can be used. PROOFS can then still

fingerprint individual files.

e Data collected is not accessible by the user, as a result of
being cryptographically signed and sent to a central data-
base. When off-network, the data is stored inaccessibly to
the user until connectivity is regained.

4.1. Security analysis

The goal of PROOFS is not to provide complete forensic
information for every possible security violation. In fact, we
do not expect PROOFS logs to withstand compromise of
operating system security breaches one might expect in an
outside intrusion. Instead, we focus primarily on violations
of organization security policies that currently are difficult
to enforce through existing computer security policy.
Because PROOFS is dependent on existing operating security
mechanisms for collection and transmission of data,
compromise of the operating system means that any data
collected after privilege violation is at best suspect, and at
worst purposefully misleading — as is true with other
logging mechanisms. We therefore do not expect to gather
full data on adversarial users, and in some cases, such as
investigations regarding malicious system administrator,
may not gather any information. These cases will have to be
dealt with by manual examination, which is the current
state of the art.

The bulk of organizational forensic investigations occur
because of violations of organizational policy. This includes
cases such as [P theft (Bumiller, 2010; Neuman, 2010); violation
of acceptable use policies through misuse such as file sharing,
harassment, or visits to sexually-oriented sites; external
requests to preserve information for pending legal action; and
loss of equipment such as laptops or mobile devices. These
cases require only insider access, and do not require the user
to be sophisticated enough to defeat system protections; in
fact, the majority of the computer-using population does not
have the technical expertise to do so. Attempting to avoid use
of any of the dictionary terms is difficult, as they are selected
from the common vernacular of the organization and span
thousands of terms. Additionally, the subject cannot control
what documents are delivered to their computer and indexed,
so avoiding terms in downloaded documents may be impos-
sible. Even where users do have the knowledge to attack the
system, strong disincentives exist against doing so. Well-
protected systems include programs that
frequently identify attack tools, and users who are caught
attempting to violate security risk not only being fired, but
face potential civil and criminal penalties. We therefore argue
that for common investigations, PROOFS will be active and
will gather useful evidence.

For sophisticated insiders and outside attackers who
breach system security, data gathered before privilege
escalation might still be useful once the means and time of
compromise are discovered via a manual forensic exami-
nation. Files that were seen to be part of the attack and that
were transferred into the network or copied from remov-
able media proceeding the attack and indexed by PROOFS
can provide clues as to how the escalation attack occurred,
and can help identify other systems that contained the
same file.

anti-virus
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5. Proactive forensic data collection using
PROOFS

We propose a novel, proactive forensic evidentiary collection
system called Proactive Object Fingerprinting and Storage
(PROOFS). The heart of PROOFS is the ability to create signa-
tures that contain information about a digital object that was
created, edited, or deleted anywhere on the internal network.
PROOFS stores and uses these signatures as a new and robust
source of forensic information. They contain a variety of
metadata about the event that caused the signature to be
created and about the object of interest. Most importantly,
they contain one or more fingerprints of the object that is
created based on its statistical properties. Fingerprints are
designed to be small to store but robust enough to match
objects that have some degree of difference between them.
While it is possible to create fingerprints for a wide variety of
file formats, such as video files, audio files, and still images as
discussed in Section 10, we focus on documents that contain
text. Text fingerprints are a form of semantics-preserving
lossy compression that represents an inverted index into the
dictionary used in their creation. They are created using
information retrieval techniques (Grossman and Frieder, 2004)
as follows.

Dictionary creation First, a dictionary of statistically signifi-
cant terms is created using a training set of existing docu-
ments taken from the system where PROOFS is to be deployed.
These statistics would be gathered from files on a shared
network drive; from files from backup systems; and from text-
containing files on individual systems.

Terms in the dictionary are selected on the basis of their
inverse document frequency, or IDF, which is the log of the total
number of documents divided by the number of documents
containing the term. Terms with low IDFs are too common to
be useful in distinguishing documents; terms with very high
IDFs tend to be too specific to differentiate between a set of
documents. We refer to normalized IDFs which have been
normalized to a range of 0—1 based on the highest IDF seen in
a collection.

Determination of appropriate IDF settings can be made by
experimentation. The sample files are compared to locate
duplicates using an accurate duplicate detection algorithm.
Next, a series of dictionaries and fingerprints are created
based on different IDFs and used to find duplicate files. The
settings that provide the most accurate results in sufficiently
small storage space can be chosen. The resulting dictionary is
shared across all systems that are to be fingerprinted.

Over time the best terms to store in the dictionary might
change as new topics become important and old ones fall out
of use. There are two ways to deal with this. The first is that
important new terms can be appended to the end of the
dictionary. When comparing fingerprints of differing lengths,
the older fingerprints can be padded out with zero bits,
preserving backward compatibility. As an alternative, the
dictionary can be periodically reconstructed with a more
current document set and redistributed across the network to
all fingerprint creating clients. This allows dictionaries to
avoid repeated growth, but requires storing multiple dictio-
nary versions for future use in interpreting old signatures.

Fingerprint creation Once the dictionary has been created,
text fingerprints are created. Each document is tokenized to
extract tokens of interest. For files that contain text but have
a proprietary file format, such as Microsoft Word or PDF,
a technology like Oracle’s Outside In can be used to extract the
text. The text is next processed to remove symbols and
numbers and to remove common stop words. Text can also be
stemmed to find word roots, and tokens of only a particular
length kept. The type of processing done depends on the type
of document being processed and what the tokens of interest
are expected to be. This set of processed tokens is used to
create the fingerprint. PROOFS creates a bit-vector fingerprint
in which each bit represents the presence or absence of a term
from the dictionary in the document. These fingerprints are of
a fixed length equal in bits to the number of terms in the
dictionary. The bit-vector fingerprints are very sparse and are
stored after compression with gzip which reduces their size by
an average of 83%. It is possible to trade storage space for
faster matching of fingerprints but here we optimize for
minimum storage requirements. We show that storage of
compressed fingerprints for real-world data can be less than
375 bytes long.

Keyword searching Because the bit-vector fingerprint is an
inverted index into the dictionary used to produce it, keyword
searches are simple. An investigator can extract the terms
used in the dictionary and select relevant terms for a boolean
search overall fingerprints. Due to the simplicity of this
operation, we do not discuss it in detail.

Fingerprint matching Fingerprints can be matched against
each other. For bit-vector fingerprints we use a cosine simi-
larity measure, which is the measure of the cosine of the angle
between two vectors represented in n space. Our experiments
specify a parameter that represents the maximum cosine of
the angle between the two vectors that can be considered
a match. In PROOFS it is possible for an investigator to control
the precision and recall of their searches to a degree by
varying this parameter. Increasing it results in higher preci-
sion but a lower recall. An investigator can use this fact to
perform initial, highly precise searches of the PROOFS data-
base, then expand the scope of the searches by decreasing the
matching parameter. These later searches will return a wider
variety of matches which are less accurate but contain more
possibilities.

Signature creation and size One or more fingerprints are
combined with metadata to create a signature. The metadata
varies depending on what event caused the signatures crea-
tion. For a file edit or file deletion, we would expect the
signature to contain the fingerprint, user identifier, file name,
file path, a time stamp for the event, a machine identifier
(such as a name, IP address, or MAC address), a code for the
event that caused the signature, and for copies, the source
path and source file name. For email, the signature could
contain the fingerprint, the source and destination addresses
and cc or bcc addresses, a time stamp, and pointers to any
fingerprints created for attachments.

The size of signatures is important to the overall storage
cost of the system. We believe that signatures are best stored
in a centralized relational database for easy searching. Our
estimates of the signature size reflect database storage rather
than a naive approach where all text is stored. For the largest
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fingerprints we used, which were 375 bytes, the total signature
size easily can be 1024 bytes. Many of the fields in the signa-
ture would be used so commonly that separate database
tables would be used to store them. The signature would
therefore consist of the fingerprint, a fingerprint creation time
stamp, and a series of fields that were keys indexing other
tables. Assuming that each entry in the database is 512 bytes
and that we are using 64-bit integers for identifiers and time
stamps, the signature field would contain the 8-byte ID for the
field in the table, the 375-byte fingerprint, an 8-byte time
stamp, and up to 15 other keys to other tables. The amount of
other data written into other tables is dependent on the
overlap in information between signatures.

System overhead We have showed elsewhere that the
storage and CPU overhead for PROOFS are low (Shields et al.,
2010). Traces for a campus email server with 8700 active
users show that signature storage would require 202 GB per
year, or 1 cent per user. Other systems require similarly low
storage. CPU overhead, as simulated using file system traces,
is also low.

5.1.  Required modifications

The first step in collecting forensic data is to instrument local
systems to create fingerprints and signatures, described
above, in response to system activity. We believe that signa-
tures should be collected when an object is modified, deleted,
or copied. Modifying the operating system to perform these
actions is not a major undertaking, as it involves only patching
the close system call for files that were opened for writing and
the unlink system call for files being deleted. Hooks into the
kernel like these already exist in operating systems that index
changed files on a file system, and it is within the capability of
an organization that provides and administers its own
systems to implement.

We do not expect that these simple modifications will
result in capture of every potential piece of evidence, partic-
ularly since we are not attempting to capture information
from memory, and because we only index files when closed
correctly. A user could potentially thwart collection by
keeping information only in memory, or by closing files by
power cycling the computer. We believe that this would make
the computer less usable, and would not be of significant help
in hiding evidence of the organizational policy violations
discussed in Section 4.1.

Systems beyond individual desktop computers and file
servers require other modifications. Email servers would
create signatures for incoming and outgoing email messages.
Any attachments to emails would fingerprinted separately
and linked to the parent email. A proxy server would host
a web cache and create signatures for objects accessed from
within the network.

A central database server is used to store the signatures
that are created by the other network components. It is
possible to estimate the required storage space by examining
the workloads of local systems, and we expect that 10 GB per
desktop system per year and 1 TB per email server per year
would be a reasonable initial size as shown in Shields et al.
(2010). In cases in which a system cannot reach the data-
base, such as an off-network laptop, the signatures can be

written to a file system partition the user cannot access, or can
be written using non-tamperable logging (Schneier and
Kelsey, 1999). In either case, the signatures should be uploa-
ded when the connection becomes available.

5.2.  Improved forensic investigative activities

The signatures we propose have four main axes of investiga-
tion: time, users, systems, and object data. Time readings
come from the time stamps made during signature creation;
user information from the user ids or email addresses in the
metadata; system information from the machine identifiers;
and information about objects from the signatures and
includes both metadata and saved content. Cross-referencing
these different axes provides a variety of ways to examine
activity. Investigations based on user activity over time are
very common and tools have been developed that do this;
where necessary, information recovered from multiple
systems is correlated to determine distributed user activity
(Buchholz and Falk, 2005; Olsson and Boldt, 2009). What has
not been possible in the past, and what PROOFS allows, is
investigating activity based on file content, even when the
files of interest no longer exist on the system. This supports
common existing forensic steps and introduces new forensic
possibilities. We describe how PROOFS can be used here.

Insider IP theft An employee leaves a company; shortly
thereafter, they start at a competing company (Neuman,
2010). The examiner is asked if they took proprietary docu-
ments with them to their new position. Using PROOFS to find
files owned by that user and the actions that occurred, the
examiner is able to show that a set of files were copied to
a USB drive. Analysis of the signatures shows the keywords in
the fingerprints were related to an internal project of interest
to the competitor.

Misuse A company employee is receiving threatening
emails on a work account. The context of the mail indicates it
is another employee, but the emails are sent through a web-
mail account that does not include a source IP. The examiner
can use the text of the emails to find all computers on the
network that ever contained the text of the message in web
cache. This provides a starting point for a deeper investigation
as to who is sending the messages.

Intrusion response A system is found to have been compro-
mised by an external attacker. A forensic examination is
performed, and a fragment of a README file that was part of
the rootkit and was fingerprinted before the rootkit stopped
PROOFS is recovered. A signature of the fragment is created
and is used to quickly identify all other compromised systems
based on signatures in the database.

Lost equipment An examiner is informed that a laptop has
gone missing. Using PROOFS she retrieves a list of files that
were on the laptop. She then uses PROOFS to identify copies of
the files on other computers in the network. For those files
with no retained copies, profiles of the contents are extracted
by fingerprint keyword. The resulting information is used to
determine the potential damage caused by the lost
equipment.

Examination support While conducting a forensic examina-
tion, a fragment of a file is found that contains compelling
evidence toward answering the investigative hypothesis.
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However, the fragment is in unallocated space and the met-
adata about which user created it and when is lost. The
examiner is able to create a signature from the fragment and
consult the PROOFS database to find what files on the system
matched, when they were deleted, and who the owner of the
files were. This narrows the investigative effort.

6. Fingerprint performance

Experimental settings The ability to create fingerprints that can
be accurately matched across changes to an object lies at the
heart of PROOFS. To prove the concept, we implemented
PROOFS fingerprinting in Java to experiment with creation of
dictionaries and measure their matching accuracy. For each
experimental trial, we created a new dictionary using 5% of
the files in the data set. Files were chosen randomly without
replacement. The dictionary created was then trimmed to
remove tokens outside a specified IDF range. We recorded the
bit-vector fingerprint length as it is equal in bits to the number
of dictionary terms.

We then selected 2000 files that were not used for the
dictionary and created bit-vector fingerprints of each. In some
cases, as described below, we then manipulated the files to
simulate edits or deletions in the text, then re-fingerprinted
them. Once created, we compared the fingerprints of the
unmodified source files to all other fingerprints using cosine
similarity matching with a parameter (normalized from 0 to
100) representing the minimum score needed to be considered
a match. For each experiment, we computed the average
precision and recall over 20 trials. Where error bars are plotted
they represent the 95% confidence interval.

Precision, recall, and F-measure Accuracy was measured by
computing the precision and recall of each trial; as these terms
are more commonly used in information retrieval than the
forensics community they are explained here. The precision is
the fraction of relevant documents matched divided by all
documents retrieved; this is also the number of true positives
over the sum of true positives and false positives. Recall is the
fraction of relevant documents matched out of all relevant
documents; or true positives divided by the sum of the true
positives and false negatives. They are standard measures of
accuracy in information retrieval systems, and higher scores
are better. As a point of comparison, Google has been
measured to have a precision of 0.29 and recall of 0.20 for
domain-specific searches (Shafi and Rather, 2005); our system
shows precision and recall of over 0.96 and 0.85, respectively.
The F-measure is the weighted harmonic mean of precision
and recall and is used to show overall performance in a more
compact form due to limited space.

6.1. Data sets

We present results from experimental runs using the Enron
email data set (Klimt and Yang, 2004), which is a collection of
forensically retrieved emails released following the investi-
gation into the collapse of the company. This data set is the
most representative publicly available forensic data set.
Results from other data sets are available in our technical
report (Shields et al., 2010).

Among other operations, PROOFS is designed to find
matching documents, so we needed to ensure that the data
sets contained matches to find. The Enron data set contains
many natural matches, as it contains copies of many emails as
seen by the sender and multiple recipients. To determine
which pairs of files constituted matches we used I-Match
(Chowdhury et al.,, 2002) to identify duplicate documents.
Automated duplicate finding was required because there were
too many documents to compare manually. These results
were later used as a point of comparison to determine
whether the matches found under PROOFS were correct.

The necessary use of I-Match as a baseline to determine
duplicates means that our results contain a potential source of
error. In our best case, PROOFS will only be seen as doing as
well as I-Match. In cases where we do better and find appro-
priate duplicate documents that I-Match did not, it will show
as reduced accuracy for PROOFS.

6.2.  Matching original documents

Our initial experimental runs were done to determine the
trade-offs between dictionary size and accuracy. We use
this to determine the optimal IDF settings for creation of
compact but accurate dictionaries. We ran a series of
experiments where we created dictionaries given either a 1,
5 or 10% sample of the data set at a variety of normalized
IDF ranges. The selected files were tokenized by replacing
punctuation with white space, removing known stop words,
using Porter stemming (Porter, 1997), limiting the length to
between 6 and 20 characters, then removing any purely
numeric tokens. The minimum normalized IDF started at
0.1 and increased in increments of 0.1 up to 0.6. For each
minimum IDF we tested a range of maximum IDFs from 0.2
incrementing by 0.1 up to 0.9. Ranges where the maximum
IDF was less than or equal to the minimum IDF were
ignored. We used the results of these experiments to choose
a set of parameters for use in our other experiments, all
based on a 5% initial sample. These are shown in Table 1
and described below.

The resulting points show the F-measure versus dictio-
nary size overall IDF ranges. We note that one would nor-
mally expect to see higher accuracy as the sample size
increases. This is not universally true in our plots as each
plotted point represents a selected IDF range. In cases where
the range is small and terms in that range not distinctive,
larger sample sizes under perform smaller sample sizes with
a wider IDF range. This is the cause of apparent outliers in
the plot.

The Enron data set can be accurately fingerprinted with
dictionaries of less than 10,000 entries. It is clear, as seen in

Table 1 — Data set statistics and parameters selected.

Enron data set

#Files 517,412 #Terms 5548
Avg. size 2777 Avg. precision 0.85
Std dev. 23,798 Avg. recall 0.96
Min IDF 0.1 Max IDF 0.7
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enron - Dictionary Size vs. F-Measure, various IDF ranges
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Fig. 1 — Enron F-measure vs. dictionary size, various IDF
ranges.

Fig. 1, that there is a larger trade-off involved with this most
diverse data set. While fingerprints can be made very accurate
the fingerprint size grows significantly, not leveling off until it
reaches in excess of 10,000 bits. We chose to reduce the
accuracy slightly in favor of smaller fingerprints, and chose
a minimum IDF of 0.1 and a maximum IDF of 0.7. This yielded
an average precision of 0.8500 + 0.0170, an average recall of
0.9555 + 0.0074, and an average fingerprint size of 5548
bits + 29 bits before compression.

To put these results in context, given a fingerprint PROOFS
is able to return at least 96% of relevant documents. Of the
documents returned, at least 85% will be relevant to the
source document. Again, as a point of reference we mention
that the measured precision and recall of Google is 0.29 and
0.20 (Shafi and Rather, 2005). PROOFS will perform more
accurately as it can select terms that are specific to the
organization running it, and it does not have to index the
world.

6.3.  Matching edited documents

Our initial results showed that we attain high accuracy in
matching unedited but related documents within a large
collection. In many forensic situations, however, we wish to
follow source documents across edits or other changes. We
now demonstrate that fingerprints are resilient to edits while
maintaining high accuracy.

Automatically summarized documents Our first experiment
with edited documents is designed to show that PROOFS can
accurately match fingerprints between a source document
and one that has been shortened by editing. Given the large
number of documents included in our data sets, it was
infeasible to have them all edited by humans; therefore, we
used automatic document summarization software to simu-
late human edits that shorten the source file. We conducted
additional experiments, omitted for space, that show this is
a reasonable approximation of human activity (Shields et al,,
2010). There are a variety of tools that do this, including
those in the Apple Summarization Service and in Microsoft
Word. For ease of use in our experiments, we used the clas-
sifier4j tool (Lothian, 2005). In small-scale testing it performed
similarly to the other tools mentioned but was compatible
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Fig. 2 — Enron automatic summarization, matcher 80.

with our Java-based experimental framework. We created
edits of source files at specified reductions of 20, 40, 60, 80, and
90% in length and matched fingerprints of those files to the
source files.

The effect of varying the matcher parameter is clearly
visible. With the higher matcher parameter of Fig. 2, the
precision and recall are above 80% with the file shortened up
to 40%; beyond that, recall falls off dramatically. Using the
lower matcher parameter of Fig. 3, the precision starts just
above 60%, but recall is above 95% and remains high with the
document shortened up to 60%. This variability is a desirable
feature. PROOFS can create and store signatures without
regard to what matcher parameter will be used. When an
investigation becomes necessary, the investigator can start
with a high matching parameter for better precision, and
reduce it to see a wider variety of less-precise results as
desired.

Overall, PROOFS supports high accuracy in matching
documents edited for size to the original source document. In
all the data sets it was possible to achieve a precision and
recall above 80% for documents that have been shortened by
40%,; for some data sets, precision and recall were above 90%
even when documents were shortened by 60%.

6.4.  Matching file fragments

A common investigative task for forensic examiners is to
search for keywords in seized media, which often finds
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Enron Dataset, Matcher Setting 60, 95% CI Error Bars
1.1 T T

09} B - .
0.8 |
0.7}
0.6 |
05|
04|

0.3 -
Average Precision

02r Average Recall - - - -
0.1+ x 4

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

% of File Deleted Contiguously

Fig. 4 — Accuracy with deleted sections, matcher 60.

fragments of files in swap space or in unallocated disk
space. While the contents of fragments can often be pivotal
in resolving a case, they lack any context about their source
or creation. PROOFS greatly improves the ability of investi-
gators to make use of file fragments by allowing retrieval of
this context, including the likely user and time of creation.

We demonstrate this by an experiment in which we
removed a contiguous section of text from the source file. The
size of the deletion was specified as a percentage of the source
file and was taken from the file at a random position. We also
conducted experiments taking sections from the start or end
of the file, but have omitted the results due to space
constraints; the results are very similar.

The Enron data set results again demonstrate the effec-
tiveness of changing the matching parameter. With the lower
parameter, shown in Fig. 4, recall remains above 85% for
deletion sizes up to 50%, but precision is below 70%, meaning
an investigator would be faced with a wider number of
possible matches to winnow through. With the higher
matcher parameter, seen in Fig. 5, the precision is well over
80% with 60% of the file deleted, but recall drops below 70%
after only 30% of the file is removed.

These results show that PROOFS is highly effective at
matching recovered fragments of text documents to their
source, adding significant context to a common investigative
activity.
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Fig. 5 — Accuracy with deleted sections, matcher 80.

7. Comparison to existing methods

Our proactive approach to collecting and storing forensic
information is a novel application of information retrieval
techniques. In this section, we demonstrate that PROOFS
fingerprints are superior to a naive approach. Space prohibits
inclusion of results using I-Match signatures (Chowdhury
et al,, 2002), but we have shown that I-Match is significantly
less resilient to matching altered files (Shields et al., 2010).

Naive approach A natural approach to preserving forensic
data would be to compress everything, store it, and index it for
later searching. We argue here that doing so would require
significantly more storage than PROOFS. In small-scale testing
on a set of 300 Word documents, 500 PDF files, and 800 text files,
each type of file compressed at differentrates. Using gzip, Word
documents were compressed by an average of 75%; text docu-
ments by 65%, and PDF files by only 16%. In a naive approach
that gzipped all files, the best approach might save 75% of
normal space required of all documents. Indexes across these
files would require additional space, reducing the savings.

In PROOFS, we perform three steps that reduce the amount
of storage required for each document. First, we extract text
from documents containing formatting. For PDF and Word
files, this reduced the file size by approximately 75%, though
plain text documents do not benefit from this step. Second, we
extract fingerprints from the tokens in the text. In our experi-
ments, the average uncompressed fingerprint size was 25% of
the average file size, for a relative reduction of 75%. Finally, the
fingerprints, being a sparse bit vector, are also compressed. The
average compression of the fingerprints using gzip was 83%.

For formatted documents, PROOFS reduces the storage
required to an average of 1.06% of the source, for an effective
reduction of 98.94% from the original. For plain text, the
storage required is 4.25% of the original, for a 95.75% reduction
in required storage over the base document. No exiting
compression mechanism can perform this well. Additionally,
PROOFS signatures do not require any additional indexing.

Overall, this means that we might expect a naive approach
to require at least 5 times the amount of storage for text files;
for formatted documents, we would expect a 23 times
increase, excluding indexes. Even with large disks, this is
a prohibitive cost.

8. Related work

PROOFS is novel because it is the first collection system to
preserve evidence about the contents of files. Operating over
file contents, rather than binary data, provides a better view of
what a user said, knew, or did. We have discussed approaches
to proactive evidence collection previously (Shields, 2010).

Other systems have proposed or implemented continuous
collection of system events, and a variety of audit and logging
systems are used to collect and store information about
running systems (Bishop, 1996; Picciotto, 1987; Wee, 1995). Log
collection and analysis is an important part of existing
investigations but log systems are not designed specifically to
support forensic examinations (Herrerias and Gomez, 2007;
Sandler et al., 2008; Takahashi and Xiao, 2008).
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Past work has recognized that hashing a file does not allow
matching of closely related documents. An approach called
fuzzy hashing (Kornblum, 2006) or similarity matching (Roussev
et al,, 2007) has been developed to help address this. These
approaches can identify files with similar binary segments but
will not identify files with common text in different formats,
such between PDF and Word format. PROOF operates on content
and will identify similar files even if the format has changed.

Network forensics systems have been proposed that collect
data from the network. Some collect information about the
contents of packets to allow attribution of payloads (Ponec
et al,, 2007), but such contents are not tied to a particular
system or user. Other systems maintain information about
files sent to a central anti-virus scanner (Oberheide et al.,,
2008), but do not describe what information is maintained
there nor if it is practical to store full copies of all files. Addi-
tionally, records are kept only of files that have not been
previously opened, so copying and renaming known files will
not create entries. These are actions that are associated
with theft of intellectual property, a common forensic
investigation.

There has been past discussion of proactive forensics,
though no common agreement on the meaning of the term has
been reached. In some cases, it has meant data collection to
detect an insider threat based on user behavior (Bradford et al.,
2004; Bradford and Hu, 2005; Paintsil, 2007). Others use itin the
sense of continuous collection (Aggarwal et al., 2005; Neuman,
2010) but do not present a complete proactive solution.

Duplicate document detection has been an area of past
work within the information retrieval community
(Chowdhury et al., 2002; Cooper et al., 2002; Heintze, 1996;
Manber, 1994). The forensics solution space differs from past
work due to the need for a small, storable fingerprint that is
more robust to matching across edits.

. Limitations and future work

We believe that PROOFS can provide a new, deep, and valuable
source of forensic information for a centrally controlled
network, but that it will complement rather than replace
existing forensics tools. This is because PROOFS is probabi-
listic. Examiners will still need to perform examinations to
confirm the PROOFS data. In addition, there is a wide variety of
evidence that is commonly used but which is not present in
PROOFS, such as file access times, so other tools will be
required to recover all relevant evidence.

Our text fingerprints currently focus on storing informa-
tion about statistically important terms. We will investigate
construction of fingerprints that provides additional infor-
mation about text files. One approach is to extract all words
from the document and use the list as input to a Bloom filter.
Storing the resulting hash will allow investigators to proba-
bilistically probe the hash for the existence of words or terms
that are not in the dictionary but which might otherwise be
important to an investigation. A different approach s to create
a fingerprint thatis a count of the number of times a particular
pattern is matched in the file. This can be used to determine if
a deleted file contained things like social security numbers,
and if so how many.

Other future work will focus on creating small, robust
signatures for other types of digital objects, including
executable, source code, images, audio, and video. In many
cases, there is work indexing and searching for these types of
files (Burges et al., 2005; Hoad and Zobel, 2006; Srinivasan and
Sawant, 2008), which we can adapt to the forensic environ-
ment. We will also examine improving the accuracy of text
searches by creating and combining multiple fingerprint types
in a single signature.

10. Conclusion

We have presented a system named Proactive Object Finger-
printing and Storage (PROOFS) that continuously and effi-
ciently creates fingerprints based on the contents of files.
Fingerprints for text files are small to store; we have shown
that for the Enron data set, a collection of over half a million
documents, fingerprints can be as small as 375 bytes but retain
high accuracy. They are also able to match with fingerprints
created from related input files with high accuracy.

Our results show that we can match fingerprints of uned-
ited source files with a recall of greater than 95% and a preci-
sion of greater than 85%. Fingerprints are also robust against
editing, and we have shown that for documents shortened by
automated summarization, fingerprints can still match
accurately when the file is only 60% of its original length in the
Enron data set. Fingerprints can also be matched when
significant portions of the source file have been deleted; we
have shown that for the Enron data set, at least 20% of the file
can be removed and still be matched.

When combined with metadata such as file names, time
stamps, and user information into a signature, fingerprints
allow central storage of information useful to forensic exam-
inations on a centrally controlled network. Investigators can
track system activity based on user, system, time, and novelly,
by the contents of objects either present on or deleted from
the systems on the network.

Acknowledgments

We would like to thank Wade Tandy and Chris Wacek for early
development of the proof-of-concept code.

REFERENCES

US v. Ziegler, http://caselaw.findlaw.com/us-9th-circuit/1102459.
html; January 2007. United States Court of Appeals, Ninth
Circuit. No. 05—30177 (1-30-07).

Aggarwal S, Henry P, Kermes L, Mulholland J. Evidence handling
in proactive cyberstalking investigations: the PAPA approach.
In: Systematic approaches to digital forensic engineering.
2005. p. 165—176.

Bishop M. A standard audit trail format. In: National Information
Systems Security’95 (18th) proceedings: making security real.
1996. p. 136.

Boyd C, Forster P. Time and date issues in forensic computing:
a case Study. Digital Investigation February 2004;1:18—23.



S12 DIGITAL INVESTIGATION 8 (2011) S3-S13

Bradford PG, Hu N. A layered approach to insider threat detection
and proactive forensics. In: Annual Computer Security
Applications Conference (ACSAC). Tuscon, AZ: December 2005.

Bradford P, Brow M, Perdue J, Self B. Towards proactive computer-
system forensics. In: International conference on information
technology: coding and computing. 2004. p. 648—652.

Buchholz F. Falk C. Design and Implementation of zeitline:

a forensic timeline editor. In: Digital Forensics Research
Workshop. 2005. p. 1-7.

Buchholz F, Spafford E. On the role of file system metadata in
digital forensics. Digital Investigation 2004;1:298—309.

Bumiller E. In: Ex-Hacker, editor. Army leak suspect is turned in.
New York Times, http://www.nytimes.com/2010/06/08/world/
08leaks.html; June 2010.

Burges C, Plastina D, Platt J, Renshaw E, Malvar H. Using audio
fingerprinting for duplicate detection and thumbnail generation.
In: Proc. acoustics, speech, and signal processing. 2005. p. 1—4.

Carrier B. File system forensic analysis. Addison-Wesley
Professional; 2005.

Chowdhury A, Frieder O, Grossman D, McCabe MC. Collection
statistics for fast duplicate document detection. ACM
Transactions on Information Systems 2002;20:171-91.

Cooper JW, Coden AR, Brown EW. Detecting similar documents
using salient terms. In: Proceedings of the eleventh
international conference on information and knowledge
management. 2002. p. 245.

Grossman D, Frieder O. Information retrieval. 2nd ed. Springer; 2004.

Heintze N. Scalable document fingerprinting. In: USENIX
workshop on electronic commerce. 1996.

Herrerias J, Gomez R. A log correlation model to support the
evidence search process in a forensic investigation. In: second
international workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE’07). April 2007. p. 31-32.

Hoad T, Zobel J. Detection of video sequences using compact
signatures. ACM Transactions on Information Systems
January 2006;24:1-50.

Keeney M, Kowalski E, Cappelli D, Moore A, Shimeall T, Rodgers S.
Insider threat study: computer system sabotage in critical
infrastructure sectors. Tech. rep., U.S. Secret Service and SEI at
CMU. May 2005.

Klimt B, Yang Y. Introducing the Enron Corpus. In: First
conference on email and anti-spam (CEAS). 2004.

Kornblum J. Identifying almost identical files using context
triggered piecewise hashing. Digital Investigation 2006;3:91—7.

Lothian N. Classifier4j, http://classifier4j.sourceforge.net;
February 2005.

Luoma V. Computer forensics and electronic discovery: the new
management challenge. Computers & Security March 2006;25:
91-6.

Manber U. Finding similar files in a large file system. In:
Proceedings of the USENIX Winter 1994 technical conference.
Berkeley, CA: 1994.

Neuman W. A man with muffin secrets, but no job with them.
New York Times, http://www.nytimes.com/2010/08/07/
business/07muffin.html; August 2010.

Oberheide J, Cooke E, Jahanian F. CloudAV: N-version antivirus in
the network cloud. In: Proceedings of the 17th USENIX security
symposium. San Jose, CA: July 2008.

Olsson J, Boldt M. Computer forensic timeline visualization tool.
Digital Investigation September 2009;6:578—87.

Oracle, Oracle outside in technology. http://www.oracle.com/
technology/products/content-management/oit/oit_all.html.

Paintsil AB. Insider threat detection: a proactive forensic
approach. Master’s thesis, Stockholm University/The Royal
Institute of Technology, Stockholm. Sweden. May 2007.

Picciotto J. The design of an effective auditing subsystem. In:
Proceedings of the 1987 symposium on security and privacy.
1987. p. 13—22.

Ponec M, Giura P, Bronnimann H, Wein J. Highly efficient
techniques for network forensics. In: Proceedings of the 14th
ACM conference on Computer and Communications Security.
2007. p. 150—160.

Porter MF. An algorithm for suffix stripping. Readings in
Information Retrieval; 1997:313—6.

Roussev V, I, Richard G, Marziale L. Multi-resolution similarity
hashing. In: Digital Forensics Research Conference (DFRWS).
2007. p. 105—113.

Sandler D, Derr K, Crosby S, Wallach DS. Finding the evidence in
tamper-evident logs. In: 2008 Third international workshop on
systematic approaches to digital forensic engineering. May
2008. p. 69—75.

Schneier B, Kelsey J. Secure audit logs to support computer
forensics. ACM Transactions on Information and System
Security (TISSEC) 1999;2:159—76.

Shafi S, Rather R. Precision and recall of five search engines for
retrieval of scholarly information in the field of Biotechnology.
Webology August 2005;2(2).

Shields C, Frieder O, Maloof M. A novel system for the proactive,
continuous, and efficient collection of digital forensic
evidence. Tech. Rep. CSTR-20100415-1, Georgetown
University. 2010.

Shields C. Towards proactive forensic evidentiary collection. In:
Hawaii International Conference on System Sciences (HICSS).
January 2010.

Srinivasan SH, Sawant N. Finding near-duplicate images on the
web using fingerprints. In: Proceeding of the 16th ACM
international conference on Multimedia. 2008. p. 831.

Takahashi D, Xiao Y. Complexity analysis of retrieving knowledge
from auditing log files for computer and network forensics
and accountability. In: 2008 IEEE International Conference on
Communications. May 2008. p. 1474—1478.

Wee C. LAFS: a logging and auditing file system. In: Annual
computer security applications conference. 1995. p. 1-10.

Clay Shields is an associate professor in the Computer Science
Department at Georgetown University, and is Director of the
Georgetown Institute for Information Assurance. Prior to arriving
at Georgetown, he was an assistant professor at Purdue Univer-
sity, where he held his first academic position after earning his
Ph.D from the University of California Santa Cruz. Before graduate
school, Clay was an infantry officer with the 101st Airborne Divi-
sion, and earned his undergraduate degree in electrical engi-
neering from the University of Virginia. His research efforts focus
on computer forensics and network security.

Ophir Frieder holds Robert L. McDevitt, K.S.G., K.C.H.S. and
Catherine H. McDevitt L.C.H.S. Chair in Computer Science and
Information Processing and is Chair of the Department of
Computer Science at Georgetown University. His research inter-
ests focus on scalable information retrieval systems spanning
search and retrieval and communications issues. He frequently
consults for industry and government and for key intellectual
property litigation; his systems are deployed in commercial and
governmental production environments worldwide. In 2007,
Springer Science and Business Media designated his co-authored
book entitled “Information Retrieval: Algorithms and Heuristics”
with the “Top Selling Title” award. He is the recipient of the 2007
ASIS&T Research in Information Science Award and a recipient of
the 2008 IEEE Technical Achievement Award. He is a Fellow of the
AAAS, ACM, and IEEE.

Mark Maloof is an associate professor in the Department of
Computer Science at Georgetown University. His research inter-
ests include machine learning, data mining, on-line learning
algorithms, concept drift, and applications of machine learning
and data mining to computer security. He led the effort that



DIGITAL INVESTIGATION 8 (2011) S3-S13 S13

established Georgetown’s first graduate programs in computer
science, and is the director of the department’s Master’s and Ph.D
programs. In 2004, he shared with Zico Kolter the award for the
best application paper at KDD for their work on detecting

malicious executables. In 2007, he shared with Greg Stephens
a Program Innovation Award from the MITRE Corporation for their
work on detecting insider threats. Mark has served as a consultant
to industry, government, and nonprofit organizations.



	 A system for the proactive, continuous, and efficient collection of digital forensic evidence
	1 Introduction
	2 Overview
	3 Background
	4 Operating environment and security analysis
	4.1 Security analysis

	5 Proactive forensic data collection using PROOFS
	5.1 Required modifications
	5.2 Improved forensic investigative activities

	6 Fingerprint performance
	6.1 Data sets
	6.2 Matching original documents
	6.3 Matching edited documents
	6.4 Matching file fragments

	7 Comparison to existing methods
	8 Related work
	9 Limitations and future work
	10 Conclusion
	 Acknowledgments
	 References


