
Carving Database Storage to
Detect and Trace Security

Breaches
James Wagner, Alexander Rasin, Boris Glavic, Karen Heart,

Jacob Furst, Lucas Bressan, Jonathan Grier

Alexander Rasin Boris Glavic Karen Heart

Jacob Furst Lucas Bressan Jonathan Grier

DePaul Database Research Group

Database Attacks by Privileged Users
 Sensitive data is commonly stored in Database Management Systems(DBMS)

- Social Networks (e.g., Facebook or Twitter)
- Ecommerce (e.g., Uber)
- Media (e.g., Netflix or Spotify)
- Banks (e.g., JP Morgan Chase)
- Healthcare (e.g., Bayer)
- Government (e.g., IL Department of Revenue)

 How do you protect your database against insider attacks?

Motivation: Malicious Administrators

Security Approaches Against Insiders
 Defense (e.g., access control) vs. Detection (e.g., audit logs)
 DBMSes maintain a history of SQL queries in an audit log.
 DBMSes can’t guarantee that audits logs are accurate.

Reliability of DBMS Audit Logs
 Log integrity verification with 3rd party tools
 What if logging was disabled?

- DBAs have the legitimate privilege to disable logging.

 Goal: Detect activity missing from log files.
 - This will be done by carving storage artifacts.

Malicious DBA Example
1. Alex is a DBA for a government agency that keeps track of criminal records.

Audit Log File

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

Database Storage

 Jonathan, 2005, piracy

DBA

Malicious DBA Example
2. Jonathan tells Alex he’ll pay him to erase his criminal record.

Audit Log File

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

Database Storage

 Jonathan, 2005, piracy

DBACriminal

Malicious DBA Example
3. Alex agrees to accept Jonathan’s bribe.
 A. Disables logging
 B. Deletes Jonathan’s criminal record
 C. Re-enables logging

Audit Log File

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

Database Storage

Malicious DBA

 Jonathan, 2005, piracy

Malicious DBA Example
4. No one is aware that Jonathan’s criminal history has been deleted.
 - No evidence in the audit log
 - Deleted records can not be queried. Example:

SELECT *
FROM CrimeReport
WHERE Record IS Deleted

Audit Log File

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

Database Storage

 Jonathan, 2005, piracy

Good Citizen

DBDetective

Suspect System

DICE
Processin

g

Log RecordsDB Records & Metadata

Log-to-
Artifact
Matcher

Flag Records not
Explained by Log
Entries

Periodically Capture Storage
(e.g., RAM snapshots and disk images)

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

 Jonathan, 2005, piracy

Jonathan, 2005, piracy

1

2
Karen, 2007, fraud

Boris, 2012, shoplifting

Explained by T2

Explained by T3

DBDetective

Suspect System

DICE
Processin

g

Log RecordsDB Records & Metadata

Log-to-
Artifact
Matcher

Flag Records not
Explained by Log
Entries

Periodically Capture Storage
(e.g., RAM snapshots and disk images)

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

 Jonathan, 2005, piracy

Jonathan, 2005, piracy

1

2
Karen, 2007, fraud

Boris, 2012, shoplifting

Explained by T2

Explained by T3

Database Image Content Explorer: DICE
 Implementation of database page carving

 Database page carving:
 - a solution to file carving for database files
 - reconstructs the database at the page level
 - returns records, indexes, metadata, and other artifacts
 - database files, disk images, or RAM snapshots

 Previously presented at DFRWS USA 2015 & 2016:
 - J. Wagner, A. Rasin, J. Grier, Database Forensic Analysis
 through Internal Structure Carving
 - J.Wagner, A. Rasin, J. Grier, Database Image Content Explorer:
 Carving Data that does not Officially Exist

DICE Example: Android Phone Data

Deleted Row Internal RowID (not part of user data)

Active Rows

DICE Example: Carving Indexes

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

Del.
Flag

Page Type: Index
Structure: F_ID

ValuePointer

0
1
2
2
3
4
5

Ptr3
Ptr1
Ptr2
Ptr6
Ptr3
Ptr4
Ptr5

ID = 3 is
gone from
Furniture
table but
remains in
the index

 Indexes store value-pointer pairs used to read specific table pages
 Deleted index values often have a longer lifetime than deleted
table records.
 Indexes can’t be directly queried. Ex.
 SELECT *
 FROM F_ID;

DBDetective

Suspect System

DICE
Processin

g

Log RecordsDB Records & Metadata

Log-to-
Artifact
Matcher

Flag Records not
Explained by Log
Entries

Periodically Capture Storage
(e.g., RAM snapshots and disk images)

T1, INSERT INTO CrimeReport
 VALUES (‘Jonathan’, 2005, ‘piracy’);
T2, INSERT INTO CrimeReport
 VALUES (‘Karen’, 2007, ‘fraud’);
T3, UPDATE CrimeReport
 SET Crime = ‘shoplifting’
 WHERE Name = ‘Boris’;

Del.
Flag

Page Type: Table
Table: CrimeReport

Karen, 2007, fraud

Boris, 2012, shoplifting

 Jonathan, 2005, piracy

Jonathan, 2005, piracy

1

2
Karen, 2007, fraud

Boris, 2012, shoplifting

Explained by T2

Explained by T3

Log-to-Artifact Matcher
 Evaluate the integrity of carved data and metadata using log entries.

Data modifications (disk images):
 1. DELETE
 2. INSERT
 3. UPDATE
 Data Definition Language (e.g., CREATE, ALTER, DROP)

Read-only queries (RAM snapshots):
 4. SELECT
 Read only queries do not leave evidence on disk

1, Christine, Chicago

3, Christopher, Seattle

4, Thomas, Austin

2, George, New York

5, Mary, Boston

T1, DELETE FROM Customer
WHERE City = ‘Chicago’;

T2, DELETE FROM Customer
WHERE Name LIKE ‘Chris%’;

Page Type: Table
Structure: Customer

Log FileDICE Output

Del.
Flag

 Only the deleted records from the DICE output need to be
considered.
 Only the DELETE commands from the log are considered.

Deleted Record-to-Log Matching

1, Christine, Chicago

3, Christopher, Seattle

4, Thomas, Austin

T1, DELETE FROM Customer
WHERE City = ‘Chicago’;

T2, DELETE FROM Customer
WHERE Name LIKE ‘Chris%’;

Page Type: Table
Structure: Customer

Log FileDICE Output

Del.
Flag

2, George, New York

5, Mary, Boston

Deleted Record-to-Log Matching
 Any command that explains a record is considered, not the
specific command.
 Name LIKE ‘Chris%’ vs City = ‘Chicago’ (1, Christine, Chicago)

1, Christine, Chicago

3, Christopher, Seattle

4, Thomas, Austin

T1, DELETE FROM Customer
WHERE City = ‘Chicago’;

T2, DELETE FROM Customer
WHERE Name LIKE ‘Chris%’;

Page Type: Table
Structure: Customer

Log FileDICE Output

Del.
Flag

2, George, New York

5, Mary, Boston

Deleted Record-to-Log Matching
 Name LIKE ‘Chris%’ explains the deleted record

(3, Christopher, Seattle)

1, Christine, Chicago

4, Thomas, Austin

T1, DELETE FROM Customer
WHERE City = ‘Chicago’;

T2, DELETE FROM Customer
WHERE Name LIKE ‘Chris%’;

Page Type: Table
Structure: Customer

Log FileDICE Output

Del.
Flag

2, George, New York

5, Mary, Boston

UNATTRIBUTED DELETE

3, Christopher, Seattle

Deleted Record-to-Log Matching
 None of the DELETE commands can explain the deleted record

(4, Thomas, Austin)

Log-to-Artifact Matcher
 Evaluate the integrity of carved data and metadata using log entries.

Data modifications (disk images):
 1. DELETE
 2. INSERT
 3. UPDATE
 Data Definition Language (e.g., CREATE, ALTER, DROP)

Read-only queries (RAM snapshots):
 4. SELECT
 Read only queries do not leave evidence on disk

Active Record-to-Log Matching

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

Log File

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);

T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);

T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);

T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);

T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;

T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

 Similar process as deleted
record-to-log matching.

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

Log File

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);

T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);

T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);

T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);

T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;

T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Active Record-to-Log Matching
 Only active records and
INSERT commands are
considered.

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

Log File

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

UNATTRIBUTED INSERT

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);

T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);

T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);

T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);

T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;

T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Active Record-to-Log Matching
 None of the INSERT commands
can explain (0, Fish) or (2, Monkey)

Log-to-Artifact Matcher
 Evaluate the integrity of carved data and metadata using log entries.

Data modifications (disk images):
 1. DELETE
 2. INSERT
 3. UPDATE
 Data Definition Language (e.g., CREATE, ALTER, DROP)

Read-only queries (RAM snapshots):
 4. SELECT
 Read only queries do not leave evidence on disk

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

Updated Record-to-Log Matching
 An UPDATE = DELETE + INSERT
 First check the integrity of deleted and active
records.
 Consider all unattributed deleted and active
records and UPDATE commands.

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);

T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);

T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);

T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);

T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;

T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

UNATTRIBUTED INSERT

UNATTRIBUTED DELETE

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);
T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);
T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);
T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);
T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;
T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

Updated Record-to-Log Matching
 Consider all unattributed deleted and active
records and UPDATE commands.
 - deleted record WHERE clause
 - active records SET clause

UNATTRIBUTED INSERT

UNATTRIBUTED DELETE

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

UNATTRIBUTED INSERT

Updated Record-to-Log Matching
 deleted record WHERE clause
 - WHERE ID = 2 matches the deleted record
 (2, Desk) T1, INSERT INTO Furniture

 VALUES (1, ‘Chair’);
T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);
T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);
T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);
T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;
T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

UNATTRIBUTED INSERT

Updated Record-to-Log Matching
 active records SET clause
 - Item = ‘Monkey’ matches the active record
 (2, Monkey) T1, INSERT INTO Furniture

 VALUES (1, ‘Chair’);
T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);
T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);
T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);
T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;
T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

UNATTRIBUTED INSERT

Updated Record-to-Log Matching
 (2, Desk) and (2, Monkey) share the same key, 2.
 We can conclude that this was data produced
by the update at T7.

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);
T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);
T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);
T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);
T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;
T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

T1, INSERT INTO Furniture
 VALUES (1, ‘Chair’);

T2, INSERT INTO Furniture
 VALUES (2, ‘Desk’);

T3, INSERT INTO Furniture
 VALUES (3, ‘Lamp’);

T4, INSERT INTO Furniture
 VALUES (4, ‘Dresser’);

T5, DELETE FROM Furniture
 WHERE Name LIKE ‘Lamp’;

T6, INSERT INTO Furniture
 VALUES (5,‘Bookcase’);

T7, UPDATE Furniture
 SET Item = ‘Monkey’
 WHERE ID = 2;

Log File

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

UNATTRIBUTED INSERT

Updated Record-to-Log Matching
 (0, Fish) remains suspect.

Log-to-Artifact Matcher
 Evaluate the integrity of carved data and metadata using log entries.

Data modifications (disk images):
 1. DELETE
 2. INSERT
 3. UPDATE
 Data Definition Language (e.g., CREATE, ALTER, DROP)

Read-only queries (RAM snapshots):
 4. SELECT
 Read only queries do not leave evidence on disk

Select Query-to-Log Matching
 All SELECT queries use either a:
 1. Full table scan (FTS)
 2. Index access.
 Views ultimately access tables and materialized views behave

 similar to tables.

FTS
 the entire table is scanned
 the DBMS allocates a limited amount of memory
 the end result of a FTS is the last N pages of the table from the
database file (i.e., a repeating pattern)

Full Table Scan: Example
 Table Employee has 100 pages.
 The DBMS allocates 4 pages to a FTS.
 A FTS of Employee leaves pages 97, 98, 99, and 100 in RAM.

Table Employee on Disk

PID: 100
SID: 131

PID: 99
SID: 131

PID: 97
SID: 131

PID: 98
SID: 131

PID: …
SID: 131

PID: 1
SID: 131

PID: 2
SID: 131

Full table scan result in buffer cache

PID: Page ID
SID: Structure ID

Full Table Scans

PID: 4
SID: 126

PID: 15
SID: 124

PID: 53
SID: 124

PID: 2
SID: 126

PID: 24
SID: 124

T3, SELECT *
FROM Customer
WHERE C_City = ‘Dallas’;

T4, SELECT *
FROM Employee
WHERE E_Name LIKE ‘%ne’;

T1, SELECT C_Name
FROM Customer
WHERE C_City = ‘Jackson’;

T2, SELECT E_Name, E_Salary
FROM Employee;

PID: 100
SID: 131

PID: 99
SID: 131

PID: 97
SID: 131

PID: 98
SID: 131

PID: 100
SID: 131

PID: 99
SID: 131

PID: 97
SID: 131

PID: 98
SID: 131

Audit Log

R
A

M

Select Query-to-Log Matching
 All SELECT queries use either a:
 1. Full table scan (FTS)
 2. Index access
 Views ultimately access tables and materialized views behave

 similar to tables.

Index Access
 an index stores value-pointer pairs to access specific table pages
 both the index pages and table pages are cached
 table pages may contain data unrelated to query
 index pages contain ordered values giving us a range of possible
filters

Index Access: Example 1
Query 1
SELECT C_Name
FROM Customer
WHERE C_City = ‘Jackson’;

PID: Page ID
SID: Structure ID

PID: 1
SID: 126

PID: 2
SID: 126

PID: 3
SID: 126

PID: 4
SID: 126

PID: …
SID: 126

Chicago, …, Detroit Houston, …, Lincoln

Index Customer City on Disk

 Query1 filters on City = ‘Jackson’
 Page ID = 4 gets read into RAM
 The relevant table pages are read
into RAM

Index Access: Example 2
Query 2
SELECT *
FROM Customer
WHERE C_City = ‘Dallas’;

PID: 1
SID: 126

PID: 2
SID: 126

PID: 3
SID: 126

PID: 4
SID: 126

PID: …
SID: 126

Chicago, …, Detroit Houston, …, Lincoln

Index Customer City on Disk

PID: Page ID
SID: Structure ID

 Query filters on City = ‘Dallas’
 Page ID = 2 gets read into RAM
 The relevant table pages are read
into RAM

Index Access: Example

PID: 4
SID: 126

PID: 15
SID: 124

PID: 53
SID: 124

PID: 2
SID: 126

PID: 24
SID: 124

T3, SELECT *
FROM Customer
WHERE C_City = ‘Dallas’;

T4, SELECT *
FROM Employee
WHERE E_Name LIKE ‘%ne’;

T1, SELECT C_Name
FROM Customer
WHERE C_City = ‘Jackson’;

T2, SELECT E_Name, E_Salary
FROM Employee;

PID: 100
SID: 131

PID: 99
SID: 131

PID: 97
SID: 131

PID: 98
SID: 131

PID: 100
SID: 131

PID: 99
SID: 131

PID: 97
SID: 131

PID: 98
SID: 131

Audit Log

R
A

M
Houston, …, Lincoln

Chicago, …, Detroit

Performance
DICE Processing
 DICE carves ~ 1.1 MB/s.
 - Several files from 1MB to 3 GB were tested.
 Carving is dependent on the # of pages, not file size:
 - 2.5 GB process snapshot with 600 MB of pages 4.2 MB/s
 - 8 GB RAM snapshot with 600 MB of pages 13.2 MB/s

Log-to-Artifact Matching
 Assuming the log can fit into memory, the cost is linear.
 DBDetective operates independent of the DBMS
 Carving and log-to-artifact matching can occur offsite

*checksum evaluation limits page parsing and artifact matching

Future Work

Timeline of Events
 Match data and metadata to specific commands in the log.
 Ex. Name LIKE ‘Chris%’ vs City = ‘Chicago’ (1, Christine,
Chicago)

Detect Direct File Modifications
 Ex. ‘Karen’ was changed to ‘Boris’ in the database file using
Python rather than SQL.
 Protect against other privileged users (system admin)
 All DBMS security (defense and detection) are bypassed

Questions?

Accuracy: False-Negatives
 The conditions for operations may overlap, creating false-negatives.
Ex. Name LIKE ‘Chris%’ vs City = ‘Chicago’ (1, Christine, Chicago)

 We are interested in identifying data that does not match any log
operation.

 False-negative present a problem if it the tampered data matches a
pre-existing log operation. Ex.
 T1. DELETE FROM Customer WHERE Name LIKE ‘Chris%’;
 T2. DELETE FROM Customer WHERE City = ‘Chicago’;
 T3. INSERT INTO Customer VALUES (1, ‘Christine’, ‘Chicago’);
 T4. Logging is disabled and (1, Christine, Chicago) is deleted

DICE Example: RAM Monitoring

Indexes

1, Chair

Page Type: Table
Structure: Furniture

5, Bookcase

 0, Fish

 2, Monkey

4, Dresser

 2, Desk

DICE Output

Del.
Flag

Page Type: Index
Structure: F_ID

Value Pointer

0
1
2
2
3
4
5

Ptr3
Ptr1
Ptr2
Ptr6
Ptr3
Ptr4
Ptr5

Value 3 is
gone from
Furniture
table but
remains in
the index

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

