
ilable at ScienceDirect

Digital Investigation 18 (2016) S3eS10
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS USA 2016 d Proceedings of the 16th Annual USA Digital Forensics Research Conference
Detecting objective-C malware through memory forensics

Andrew Case a, Golden G. Richard III b, *

a Volexity, United States
b Dept. of Computer Science, University of New Orleans, LA 70148, United States
Keywords:
Memory forensics
Malware
Mac OS X
Objective-C
* Corresponding author. Dept. of Computer Sc
Orleans, New Orleans, LA 70148, United States.

E-mail addresses: andrew@dfir.org (A. Case), gold
Richard).

http://dx.doi.org/10.1016/j.diin.2016.04.017
1742-2876/© 2016 The Authors. Published by Elsev
licenses/by-nc-nd/4.0/).
a b s t r a c t

Major advances in memory forensics in the past decade now allow investigators to effi-
ciently detect and analyze many types of sophisticated kernel-level malware. With oper-
ating systems vendors now routinely enforcing driver signing and integrating strategies for
protecting kernel data, such as Patch Guard, userland attacks are becoming more attractive
to malware authors, as evidenced in the notorious Crisis malware. We therefore turn our
attention to improving memory forensics techniques for analysis of malware in userland.
In this paper, we focus on new methods for detecting userland malware written in
Objective-C on Mac OS X. As the paper illustrates, Objective-C provides a rich set of APIs
that malware can use to manipulate and steal application data and to perform other
malicious activities. Our novel memory forensics techniques deeply examine the state of
the Objective-C runtime inside of targeted processes, identifying a number of suspicious
activities, from keystroke logging to pointer swizzling. We then examine our techniques
against memory samples infected with malware found in targeted OS X attacks.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Memory forensics has quickly become one of the pri-
mary methods for digital forensic investigators to detect
and analyze sophisticated malware and rootkits. Since
memory forensics tools are minimally reliant on the
running operating system for gathering volatile data, they
can often locate and analyze forensics artifacts that live
analysis tools would miss. To date, the bulk of memory
forensics research has targeted kernel level analysis. This
occurred because kernel-level rootkits wield great power
over running systems, including control of hardware de-
vices, the operating system itself, as well as all running
applications. Kernel level rootkits also make it trivial for
attackers to hide a wide range of activity, such as
ience, Univ. of New

en@cs.uno.edu (G.G.

ier Ltd. This is an open acc
installation of attacker tools, lateral movement, and long-
term, persistent infection.

This model for malware has recently changed as
operating systems have heavily locked down access to
kernel mode by unknown third party code and taken steps
to attempt to protect kernel-level data structures and code
from manipulation. The most prominent examples of this
trend are the enforcement of signed drivers on Microsoft
Windows (Kernel-Mode Code) and Mac OS X (Pot) as well
as Microsoft Patch Guard (Kernel Patch). While all of these
protections have been temporarily bypassed, the discov-
ered vulnerabilities were subsequently patched. Regard-
less, the protections still significantly raise the bar for
attackers to successfully load their rootkits on compro-
mised systems (Defeating Windows Driver; Skape and
Skywing; Uroburos PatchGuard; Breaking OS).

The inability to utilize kernel-level malware has led to
a rise in malware that operates mostly in process memory,
also known as userland. This malware can accomplish
many of the same tasks as kernel-level malware, such as
hiding attacker activity from live system tools, stealing
ess article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrew@dfir.org
mailto:golden@cs.uno.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.04.017&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.04.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.04.017
http://dx.doi.org/10.1016/j.diin.2016.04.017

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10S4
data, and maintaining long-term persistence, without
having to enter kernel mode. On Windows, this has led to
malware with a single executable that can run on a wide
variety of platforms, from Windows XP through Windows
8 and 10. Such broad OS support would be very difficult to
do in a stable manner for any kernel-level rootkit with
complex functionality. On Mac OS X, this has led to high-
profile malware, such as Ventir (Erwin) and Crisis
(Katsuki), which contain both userland and kernel mode
components that load separately depending on whether
they are executed with root privileges. Due to the exten-
sive APIs provided by OS X, these malware samples can
accomplish the same goals regardless of which compo-
nents load.

In this paper, we explore Objective-C, a language and
associated runtime supported by Apple for development
of userland applications on the OS X and iOS platforms.
As discussed throughout the paper, malware can abuse
the rich APIs of the Objective-C runtime system in order
to monitor, steal, and manipulate a wide range of data
processed by applications. Unfortunately, these abuses
are completely ignored by existing memory forensics
research and tools. In order to detect malware using
these facilities, we researched and developed novel
memory forensics analysis techniques that can deeply
examine the state of the Objective-C runtime inside of
targeted processes. These new defensive techniques
were developed against the open source Volatility
Memory Analysis Framework (Volatility Memory). Vola-
tility is one of the most popular memory forensics plat-
forms and is considered an industry standard tool in the
fields of incident response and malware analysis. In
Section 5 of this paper, each of our developed techniques
is presented along with a newly created Volatility plugin
that implements the described analysis. Upon publica-
tion of the paper, the plugins will be contributed to the
open source Volatility project for use by the forensics
community.
Related work

Wardle (2014) provides a look at several examples of
Mac OS X malware and surveys persistence mechanisms.
Although no previous memory forensic analysis efforts
exist for deep analysis of Objective-C applications on Mac
OS X, there has been substantial work in a number of
related areas. These efforts are discussed below.
Objective-C security analysis

In 2015, a researcher with the handle “nemo” published
a paper, “Modern Objective-C Exploitation Techniques” in
the Phrack journal (nemo). In this paper, a view of
Objective-C classes and runtime data structures as they are
stored in memory is presented. Although nemo's analysis
was not conducted for the same reasons as ours, many of
the data structures discussed in the Phrack article are the
same as those needed for the research presented in this
paper.
Userland runtime analysis

Much like Objective-C for OS X and iOS, Google provides
a dedicated runtime for applications on its Android plat-
form. Known as Dalvik, this runtime provides a rich set of
consistent APIs for accessing the hardware and software
components of Android devices. Also, like Objective-C, a
wide range of malware samples has abused Dalvik and its
features.

To allow malware analysts to deeply explore Dalvik and
its runtime state, a number of techniques have been
developed. The first was by Andrew Case and presented at
Source Seattle 2011 (Case). In that work, an algorithm for
locating all of Dalvik's classes in memory along with their
associated methods and instance variables was presented.
This included the ability to present the human-readable
form of variables, such as the readable characters for
string types and the numerical values for integer types. No
source code was ever released, however.

In 2013, Holger Macht published his Master's thesis
titled “Live Memory Forensics on Android with Volatility”.
His thesis provides precise details of Dalvik's data struc-
tures in memory as well as a number of Volatility plugins to
find and analyze all of the loaded classes (Macht). This level
of detail allows investigators to immediately find all data
structures related to a malware sample as well as locate its
code in memory.

These previous efforts for Dalvik closely mirror the goals
of our research for the Objective-C runtime.

Userland malware detection

A Volatility developer, Michael Ligh, released a set of
plugins to analyze a number of Microsoft Windows user-
land APIs that provide functionality for DLL injection,
keystroke logging, function hooking, and more. These were
documented on the Volatility Labs blog (Ligh andMoVP 1.1;
Ligh and MoVP 1.2; Ligh and MoVP 2.2; Ligh) as well as
reproduced in greater detail in the book The Art of Memory
Forensics (Ligh et al., 2014).

Although the data structures and algorithms discussed
in this paper are completely different from the ones dis-
cussed in Ligh's work, our work was influenced by his, as
many of the same abuses can also be performed against OS
X systems.

Objective-C

Background

Objective-C is an open source (opensource.apple.com)
language and associated runtime maintained by Apple for
developers on the OS X and iOS platforms. Objective-C
abstracts away many of the difficult aspects of program-
ming systems software in C and Cþþ while still retaining
many of the familiar semantics. The runtime provides very
flexible runtime support for function calls, class instantia-
tion, and use of variables and class members. For instance,
all class and classmember accesses can be performed based
on a string name at runtime. Similarly, any class can locate
other classes and instances at runtime based on string

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10 S5
descriptions. As described in Section 5, this dynamic run-
time environment provides a wide range of features that
can be abused by malware.

Of particular relevance formemory analysis, Objective-C
on Mac OS X also provides a rich API to access user and
system activity, hardware peripherals (web cameras, mi-
crophones, keyboard, mouse, etc.), and integrity moni-
toring facilities. Due to the ease in which malware
developers can leverage Objective-C to implement a wide
range of malicious activity portably across Mac OS X ver-
sions, a number of high profile malware samples have been
discovered that abuse the Objective-C runtime. In Section 5
we discuss how a number of these features are imple-
mented by the runtime, how malware abuses them, and
how they can be detected through memory forensics.
Runtime operations and data structures

In order to analyze the state of the Objective-C runtime
inside of a particular process, our techniques must be able
to enumerate all loaded classes as well as their state. This
analysis begins by locating the realized_class_hash global
variable of the Objective-C library (libobjc). We currently
locate this global variable by one of two methods. The
simplest, for the instances in which we can enumerate
symbols of the library, is to find it by directly processing the
library's symbol table. This can either be done with the li-
brary file from disk or using Volatiltiy's Mach-o APIs to
enumerate symbols from process memory or the in-
memory file cache. If the address is gathered from a file
on disk then the address must be passed to each Volatility
plugin. If the address cannot be discovered by these means,
e.g., when an investigator is only supplied a memory
sample and the symbol table is not memory-resident, then
our Volatility plugins will scan through process memory
and automatically locate the table.

The realized classes hash table holds a reference to every
Objective-C class (type objc_class) loaded within a particular
process. Of interest to us is that each class holds a reference to
itsmembers, including their name, type, and implementation
pointer, its superclasses, and its instancevariables’definitions.

Objective-C malware

In this section we discuss three of the most popular
methods by which Objective-C's runtime is abused by
malware on Mac OS X.
Keystroke logging

Background
Objective-C on Mac OS X provides two library functions

for monitoring a system's keyboard (NSEvent). The first,
addGlobalMonitorForEventsMatchingMask, allows registra-
tion of a callback that will be executed each time a keystroke
is pressed in any process other than the calling process. The
second, addLocalMonitorForEventsMatchingMask, registers a
callback for keystrokes pressed in the calling process. These
can be used in combinationwhen malware injects itself into
a foreign, long-lived process that it wishes to monitor, along
with all the other processes that are running.

Runtime implementation
Both of the functions discussed above for registering a

keyboard callback are implemented in the closed source
AppKit framework. AppKit in turns relies on the HIToolbox
sub-framework of the closed source Carbon framework in
order to register the events with the global system monitor.
When using these APIs, the caller must specify a handler,
which will be called upon each key press, as well as an event
mask, which specifies which events the user is interested in.
The code in Fig. 1 illustrates a simple keylogger using the
global monitoring API to watch for keyboard down events,
logging each keystroke to the system log.

Through a reverse engineering effort, we determined
that to start the global registration process, addGlobalMo-
nitorForEventsMatchingMask creates an instance of NSGlo-
balEventObserver. Both NSGlobalEventObserver, which is
used for global monitoring, as well asNSLocalEventObserver,
which is used for same-process monitoring, inherit from
NSEventObserver. This parent class has members block and
mask, which are initialized using the function's parameters.
addGlobalMonitorForEventsMatchingMask then calls Instal-
lEventHandler (Carbon Event Manager) with a target
parameter of GetEventMonitorTarget() and a handler Glob-
alObserverHandler. It also sets the userData parameter to
the NSEventObserver class that was previously created.
GetEventMonitorTarget is a privileged, global event target
that provides access to keyboard events. In Objective C,
event targets are registered to receive events from the low-
level hardware subsystems and are registered and handled
by the runtime upon initialization. The userData parameter
specifies a pointer to a function that will be sent to the
initial handler of events, which in this case is Global-
ObserverHandler. Every time a key is pressed, Global-
ObserverHandler then extracts the pointer to each user-
defined callback and calls it with the key pressed.

Volatility analysis plugin
The mac_observers plugin was created to detect appli-

cations and libraries that have registered Objective-C call-
backs using the two previously described APIs. It
accomplishes this by finding every instance of NSEventOb-
server, and then reporting its handler address and event
mask. The logic for this plugin is as follows:

1) Enumerate every process that maps the Objective-C
library.

2) Locate the objc_class structure for NSEventObserver by
enumerating realized_class_hash.

3) Scan the data (read/write) memory regions of the pro-
cess looking for the address of the class. This uses the
fact that each instance of a class is represented by an
Object structure whose first member, isa, points to its
defining class. This successfully locates all instances of a
given class.

4) For each instance found, its handler member is mapped
to its backing file, if any, and the mask member bitmask
is decoded into its human-readable event types.

Fig. 1. Registering a global keylogger using Objective-C.

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10S6
Fig. 2 shows the output of this plugin running against a
sample keylogger application (kl) that implements the code
shown in Fig. 1. As Fig. 2 illustrates, the handler application
(kl) is correctly discovered, as is the fact that kl has registered
interest in key down events. These events fire immediately
afterakey ispressed.Wenote that themaskparameter for the
Objective-C APIs we have described allows for not only
monitoring thekeyboard,butalsomouseclicksandpressesof
a touch-screen device. The pluginproperly decodes themask
to uncover all of these event types.
Method swizzling

Background
Objective-C provides the ability for user-defined classes

to “swizzle” methods of other classes loaded within the
runtime. Swizzling a method involves swapping the
method's implementation dynamically at runtime with
that of another implementation. Future calls to a swizzled
method use the new implementation instead of the orig-
inal. Swizzling essentially allows dynamic updates to
method implementations, including those that might
otherwise be very difficult to modify, e.g., methods for
which no source code is available.

From amalware analysis perspective, this is very similar
to API hooking, which has been implemented in numerous
malware samples across all modern operating systems.
Traditionally, API hooks are detected by looking for func-
tions whose first several bytes have been overwritten (i.e.,
evidence inline hooks), as well as examining runtime tables
used to map function names to their runtime addresses for
anomalies. These traditional hooks are already detected on
Windows through Volatility's apihooks plugin (Volatility
apihooks Plugin) and on Mac through the mac_apihooks
plugin (Volatility mac_apihooks Plugin).
Fig. 2. Output of the new Volatility mac_observe
Unfortunately, all existing methods for detecting API
hooks will completely miss method swizzling in Objective
C applications, since the call redirection is implemented
inside the language runtime, and not throughmanipulation
of the dynamic loader.

The most infamous malware to use method swizzling
was Crisis (Vilaca). Although this rootkit was recently
shown to be detectable by memory analysis techniques
(Case and Richard, 2015), only the kernel components of
the malware were detected. To our best knowledge, no
publicly available memory analysis research has been pre-
sented that proposes techniques for detecting the
Objective-C components of Crisis (or of any other
Objective-C based malware). As discussed in (Nayyar) and
confirmed through our own research, Crisis leverages
method swizzling for a number of purposes including
hiding processes from Apple's Activity Monitor, taking
screenshots of infected systems, activating and recording
web cameras andmicrophones, and hooking awide variety
of browser activity. It also employs methods for evading
antivirus protection. This is particularly concerning as OS X
is used almost exclusively on end-user systems, and mal-
ware like Crisis is used to target individuals of interest to
both government and criminal organizations.

Runtime implementation
Method swizzling is accomplished at runtime by calling

the method_exchangeImplementations function (Mac OS).
This function takes two parameters, the first being a
reference to the original method to be swizzled and the
second a reference to the replacement method. Each
method is specified by its string-based name. In order to
get a reference to a particular method of a particular class,
the class_getInstanceMethod function can be used. This
function takes a reference to a class and the string name of
a method and returns its reference. To get a reference to a
particular class, the objc_getClass function can be called
with the first parameter set to the string name of the class.
The code snip in Fig. 3 illustrates how Crisis performs these
operations to hook the Safari web browser.

From code injected into the Safari process, Crisis locates
the BrowserWindowController class through objc_getClass. It
then calls its own swizzleMethod function, passing the class,
the Safari webFrameLoadCommitted, method and the web-
FrameLoadCommittedHook method, defined by Crisis. This
allows Crisis to intercept every call to the method
webFrameLoadCommitted.

Runtime-supported swizzling makes method replace-
ment at runtime trivial, as Objective-C can locate the
original class in memory and then provide functionality to
rs plugin, which detects keystroke loggers.

Fig. 3. Excerpt of Crisis' hooking code.

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10 S7
exchange the method's implementation in a safe and
consistent manner. This is much simpler than traditional
API hooks that require malware to overwrite potentially
running code or to manually tamper with the dynamic
loader's runtime data structures.

Internally, to install the new implementation method in
a swizzling operation, the Objective-C runtime locates the
method_t structure corresponding to the method in the
given class. Each class's members are stored in a list pointed
to by the bits member of the class. Once the method
structure is located, the runtime then sets the imp method
of the corresponding method_t structure to the new
implementation. The impmember is simply a pointer to the
beginning of the code (instructions) for the method.

Volatility analysis plugin
The mac_swizzled plugin was created to detect swizzled

Objective-C methods. By default, the plugin will:

1) Enumerate every process that maps the Objective-C
library.

2) Locate all classes using either the given realized_
class_hash address or by scanning.

3) For each class found, enumerate every method.
4) Print the method along with its address in memory and

backing library, if any.

Fig. 4 illustrates the output of the mac_swizzled plugin,
using the default output (the pathnames have been trim-
med in the figure to make them fit). As the figure shows,
our plugin is able to successfully locate and print infor-
mation about all loaded methods. This can be very useful
when an analyst wants to fully understand what is occur-
ring on a system and all the components loaded into a
particular process. A downside of this approach, however,
is that it produces hundreds of lines of output per process.
This prevents effective use of the plugin in a triage effort by
an analyst working a real incident. To help in such situa-
tions, the plugin also provides a –triage option that only
outputs methods that meet one or more criteria. This is
similar to the alertMsg function of RegRipper as imple-
mented by Harlan Carvey (regripper tool).

Thefirst alert type is generated if amethod is implemented
in a different library than themajority of the othermethods of
the class. This is accomplished by keeping a hash table of each
class and the libraries its methods use. Once enumeration is
completed, the libraries used by each class are compared to
ensure that all methods of each class are implemented in the
same source. From our study of real-world and proof-of-
concept malware, one method being swizzled is enough to
accomplish specific malicious tasks. This makes the alert very
effective against real-world samples.

The second alert triggers if swizzled methods point to
anonymous (non-file backed) regions. Using the default
runtime API, all class method implementations should be in
a process region backed by the implementing library. In the
case of shellcode or reflective library injection (skape and
Turkulainen) though, the method implementation will
reside within an anonymous memory region. This again
makes for simple alerting logic. The last alert type reports if
a method is implemented in a library loaded from a sus-
picious directory, such as /tmp or /private/var/tmp.

Combined, these filtered alerts provide investigators
with immediately actionable indicators as opposed to
hundreds of data points that must be manually filtered.

Named ports

Background
Objective-C provides the ability for applications to reg-

ister ports that are then accessible to all other Objective-C
applications, to provide inter-process communication.
This is handled by the NSPortNameServer class (Foundation
Framework Reference), which interacts with the Distrib-
uted Object subsystem (Distributed Objects). Crisis lever-
ages this functionality in order to mark a system as
infected. Since Crisis injects itself into many processes, it
needs amethod to ensure that different processes do not all
attempt to infect the system and leave it in an inconsistent
state. Fig. 5 illustrates the named port check in Crisis. In this
code, Crisis attempts to register the “com.ap-
ple.mdworker.executed” named port. The function will fail
if the port is already registered, which allows Crisis to
detect the previous installation of the backdoor.

This use of a global system infectionmarker is analogous
to the well-documented behavior of Windows malware
samples that leveragemutexes or atoms tomark a system as
infected. In fact, buildingadictionaryof known-badmutexes
and atom strings to immediately identify malware is a
technique used by many forensics analysts. Similarly, expe-
rienced security teamswill buildwhitelist ofmutexes froma
known-good copy of a system so that they can then later be
used to immediately spot anomalies in future investigations.
Similar approaches can be ported to OS X systems to spot
both known and unknown malware samples.

Runtime implementation
On OS X versions 10.6 through 10.9, registered ports are

stored in a hash table of the calling process' associated
launchd process. Depending on the OS version and system
runtime state, there may only be one launchd process, run
as root (UID 0), or there may be several launchd processes.
In the case of multiple launchd instances, there is generally
one per user login as well as for specific services, such as
the file system indexer, Spotlight.

Fig. 4. Output of the new Volatility mac_swizzled plugin, which detects Objective-C pointer swizzling.

Fig. 5. Crisis' named port registration check.

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10S8
This hash table is a global variable named port_hash.
Each key of the hash table is a structure of typemachservice,
which has two members of interest. The first, port_hash_sle,
is the structure's linkage into the per-hash bucket list of
services. The second member of interest is name, which
contains the ASCII name of the service. In the case of the
port registered by Crisis, the name member is the NULL-
terminated string “com.apple.mdworker.executed”. This
hash table is populated through a client process, such as
Crisis, by calling the registerPort API. Internally, the port is
represented by a NSMachBootstrapServer instance. This
class is implemented in the proprietary OS X Foundation
framework. Binary analysis of this class' implementation
reveals that it communicates with the associated remote
launchd process through a call to bootstrap_look_up2. This
function is implemented inside of the open source
liblaunchd, which clients link with in order to use launchd's
client API. Through OS X's IPC API, liblaunchd calls its server
component (job_mig_look_up2) inside the remote launchd
process. This remote function then checks if the port is
already registered, and if not, it adds it to port_hash, among
other initialization tasks.

Beginning with OS X 10.10 (Yosemite), Apple closed
source launchd and moved it to the proprietary libxpc li-
brary. Currently, we have not performed analysis on the
newer implementation, since Jonathan Levin, a well-
known OS X and iOS researcher, has claimed that he has
reverse-engineered the entire libxpc, and will be releasing a
complete, open source clone in the new edition of his book
(Levin). When his open source implementation is released,
wewill then add support for the newer OS X versions to our
new plugin, which is described next.
Volatility analysis plugin
In order to analyze registered ports for launchd in-

stances, we developed the mac_launchd_ports Volatility
plugin. The plugin works as follows:

1) Enumerate all processes and filter to launchd instances.
2) Find where launchd is mapped into process memory by

walking the process memory mappings.
3) Locate port_hash through a given command line option

or by scanning. Similar to finding realized_class_hash, the
offset of this symbol can be found manually from the file
on disk or through inspection of /sbin/launchd, extracted
from the in-memory file cache. Volatility also supports
dynamically finding it if the symbol table is memory
resident.

4) Walk each index of port_hash (maximum of 32), and
each linked list stored at each index.

5) Print the process ID, address, and name of each regis-
tered Mach service.

The plugin also makes a best effort to filter out corrupt
data, which is often encountered during memory forensics
of real systems. It does this by ensuring that pointers point
to valid addresses (i.e., are present in memory) as well as
optionally validating that the name member contains a
valid ASCII string.

Fig. 6 illustrates the output of the mac_launchd_ports
plugin executed against a memory sample infected with
Crisis. In the output, along with benign ports, the one that
Crisis registers is also evident.

Using a known-bad set of named ports would allow
immediate identification of malware like Crisis. An inves-
tigator could also build a whitelist of named ports from a
known-good system and then use it to quickly find named
ports of forensic interest.
Conclusions and future work

In this paper, we presented new techniques for detect-
ing userland malware written in Objective-C for Mac OS X.
Our work involved a deep analysis of the Objective-C

Fig. 6. Output of the new Volatility mac_launchd_ports plugin, which analyzes the use of named ports on Mac OS X.

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10 S9
runtime and APIs, to identify interesting process state that
is potentially indicative of malicious behavior, such regis-
tration of keystroke event monitors, the use of named
ports, and pointer swizzling. The plugins we've created for
the Volatility framework automatically analyze important
artifacts in the Objective-C runtime and produce output
that can easily be used by analysts to isolate and more
deeply investigate these behaviors. Existing approaches for
malware detection onMac OS X do not detect the behaviors
we have targeted, since the Objective-C runtime maintains
state outside of the dynamic loader and the code section of
executables.

With the rapid adoption of OS X systems in corporate
and government networks, along with the increasing
number of advanced OS X malware samples already found
in the wild, the need for robust detection of OS X specific
rootkits will continue to grow. By incorporating Objective-C
inspection techniques into their investigative workflows,
forensic analysts will be far better prepared to detect and
analyze advanced threats.

In order to stay ahead of possible malware infection
vectors, our research team plans to further explore the
Objective-C runtime to find additional features and APIs
that can be abused by malware. Because of the robust na-
ture of the Objective-C runtime, we strongly suspect that
additional work is needed to identify features that malware
may leverage to operate undetected.

Finally, we are also investigating the Swift runtime, as
this language is gaining momentum on both OS X and iOS.
References

“Analyzing the Uroburos PatchGuard Bypass,” https://blogs.mcafee.com/
mcafee-labs/analyzing-uroburos-patchguard-bypass/. [Accessed
25.01.16].

“Breaking OS X Signed Kernel Extensions with the NOP,” https://reverse.
put.as/2013/11/23/breaking-os-x-signed-kernel-extensions-with-a-
nop/. [Accessed 25.01.16].

Case, A. “Memory Analysis of the Dalvik (Android) Virtual Machine,”
http://www.slideshare.net/AndrewDFIR/android-memoryanalysis
[Accessed 26.0.1.16].

Case A, Richard GG. Advancing Mac OS X rootkit detection. Digit Investig
2015;14:S25e33.
“Carbon Event Manager Programming Guide,” https://developer.apple.
com/legacy/library/documentation/Carbon/Conceptual/Carbon_
Event_Manager/CarbonEvents.pdf [Accessed 04.02.16].

“Defeating Windows Driver Signature Enforcement #1: Default Drivers”
http://j00ru.vexillium.org/?p¼1169. [Accessed 25.01.16].

Erwin, D., “Ventir Trojan Intercepts Keystrokes from Mac OS X Com-
puters,” https://www.intego.com/mac-security-blog/ventir-trojan-
intercepts-keystrokes-from-mac-os-x-computers/. [Accessed
25.01.16].

“Foundation Framework Reference,” https://developer.apple.com/library/
mac/documentation/Cocoa/Reference/Foundation/Classes/
NSPortNameServer_Class/#//apple_ref/occ/instm/
NSPortNameServer/. [Accessed 25.01.16].

https://opensource.apple.com/. [Accessed 25.01.16].
“Introduction to Distributed Objects,” https://developer.apple.com/

library/mac/documentation/Cocoa/Conceptual/DistrObjects/
DistrObjects.html#//apple_ref/doc/uid/10000102i. [Accessed
26.01.16).

Katsuki, T. “Crisis: The Advanced Malware,” http://www.symantec.com/
content/en/us/enterprise/media/security_response/whitepapers/
crisis_the_advanced_malware.pdf [Accessed 25.01.16].

“Kernel Patch Protection” https://en.wikipedia.org/wiki/Kernel_Patch_
Protection. [Accessed 25.01.16].

“Kernel-Mode Code Signing Requirements” https://msdn.microsoft.com/
en-s/library/windows/hardware/ff548239(v¼vs.85).aspx. [Accessed
25.01.16].

J. Levin, http://newosxbook.com/articles/jlaunchctl.html [Accessed
04.02.16].

Ligh, M. H., “OMFW 2012: Malware In the Windows GUI Subsystem,”
http://volatility-labs.blogspot.com/2012/10/omfw-2012-malware-in-
windows-gui.html. [Accessed 25.01.16].

Ligh, M. H., “MoVP 1.1 Logon Sessions, Processes, and Images,” http://
volatility-labs.blogspot.com/2012/09/movp-11-logon-sessions-pro-
cesses-and.html. [Accessed 25.01.16].

Ligh, M. H., “MoVP 1.2 Window Stations and Clipboard Malware,” http://
volatility-labs.blogspot.com/2012/09/movp-12-window-stations-
and-clipboard.html. [Accessed 25.01.16).

Ligh, M. H., “MoVP 2.2 Malware In Your Windows,” http://volatility-labs.
blogspot.com/2012/09/movp-22-malware-in-your-windows.html.
[Accessed 25.01.16).

Ligh MH, Case A, Levy J, Walters A. The art of memory forensics. Indi-
anapolis, ID: Wiley; 2014.

Macht, H. “Live Memory Forensics on Android with Volatility,” https://
www1.informatik.uni-erlangen.de/filepool/publications/Live_
Memory_Forensics_on_Android_with_Volatility.pdf. (M.S. thesis),
Department of Computer Science, Friedrich-Alexander University
Erlangen-Nuremberg [Accessed 26.01.16].

“Mac OS X Objective-C Runtime Reference,” https://developer.apple.com/
library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/#//apple_
ref/c/func/method_exchangeImplementations. [Accessed 25.01.16].

Nayyar, H. “An Opportunity in Crisis,” https://www.sans.org/reading-room/
whitepapers/threats/opportunity-crisis-34600. [Accessed 25.01.16].

nemo, “Modern Objective-C Exploitation Techniques,” http://www.phrack.
org/papers/modern_objc_exploitation.html. [Accessed 25.01.16].

https://blogs.mcafee.com/mcafee-labs/analyzing-uroburos-patchguard-bypass/
https://blogs.mcafee.com/mcafee-labs/analyzing-uroburos-patchguard-bypass/
https://reverse.put.as/2013/11/23/breaking-os-x-signed-kernel-extensions-with-a-nop/
https://reverse.put.as/2013/11/23/breaking-os-x-signed-kernel-extensions-with-a-nop/
https://reverse.put.as/2013/11/23/breaking-os-x-signed-kernel-extensions-with-a-nop/
http://www.slideshare.net/AndrewDFIR/android-memoryanalysis
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref4
https://developer.apple.com/legacy/library/documentation/Carbon/Conceptual/Carbon_Event_Manager/CarbonEvents.pdf
https://developer.apple.com/legacy/library/documentation/Carbon/Conceptual/Carbon_Event_Manager/CarbonEvents.pdf
https://developer.apple.com/legacy/library/documentation/Carbon/Conceptual/Carbon_Event_Manager/CarbonEvents.pdf
http://j00ru.vexillium.org/?p=1169
http://j00ru.vexillium.org/?p=1169
https://www.intego.com/mac-security-blog/ventir-trojan-intercepts-keystrokes-from-mac-os-x-computers/
https://www.intego.com/mac-security-blog/ventir-trojan-intercepts-keystrokes-from-mac-os-x-computers/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPortNameServer_Class/#//apple_ref/occ/instm/NSPortNameServer/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPortNameServer_Class/#//apple_ref/occ/instm/NSPortNameServer/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPortNameServer_Class/#//apple_ref/occ/instm/NSPortNameServer/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPortNameServer_Class/#//apple_ref/occ/instm/NSPortNameServer/
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DistrObjects/DistrObjects.html#//apple_ref/doc/uid/10000102i
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DistrObjects/DistrObjects.html#//apple_ref/doc/uid/10000102i
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DistrObjects/DistrObjects.html#//apple_ref/doc/uid/10000102i
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/crisis_the_advanced_malware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/crisis_the_advanced_malware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/crisis_the_advanced_malware.pdf
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://msdn.microsoft.com/en-s/library/windows/hardware/ff548239(v=vs.85).aspx
https://msdn.microsoft.com/en-s/library/windows/hardware/ff548239(v=vs.85).aspx
https://msdn.microsoft.com/en-s/library/windows/hardware/ff548239(v=vs.85).aspx
http://newosxbook.com/articles/jlaunchctl.html
http://volatility-labs.blogspot.com/2012/10/omfw-2012-malware-in-windows-gui.html
http://volatility-labs.blogspot.com/2012/10/omfw-2012-malware-in-windows-gui.html
http://volatility-labs.blogspot.com/2012/09/movp-11-logon-sessions-processes-and.html
http://volatility-labs.blogspot.com/2012/09/movp-11-logon-sessions-processes-and.html
http://volatility-labs.blogspot.com/2012/09/movp-11-logon-sessions-processes-and.html
http://volatility-labs.blogspot.com/2012/09/movp-12-window-stations-and-clipboard.html
http://volatility-labs.blogspot.com/2012/09/movp-12-window-stations-and-clipboard.html
http://volatility-labs.blogspot.com/2012/09/movp-12-window-stations-and-clipboard.html
http://volatility-labs.blogspot.com/2012/09/movp-22-malware-in-your-windows.html
http://volatility-labs.blogspot.com/2012/09/movp-22-malware-in-your-windows.html
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref22
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref22
https://www1.informatik.uni-erlangen.de/filepool/publications/Live_Memory_Forensics_on_Android_with_Volatility.pdf
https://www1.informatik.uni-erlangen.de/filepool/publications/Live_Memory_Forensics_on_Android_with_Volatility.pdf
https://www1.informatik.uni-erlangen.de/filepool/publications/Live_Memory_Forensics_on_Android_with_Volatility.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/#//apple_ref/c/func/method_exchangeImplementations
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/#//apple_ref/c/func/method_exchangeImplementations
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/#//apple_ref/c/func/method_exchangeImplementations
https://www.sans.org/reading-room/whitepapers/threats/opportunity-crisis-34600
https://www.sans.org/reading-room/whitepapers/threats/opportunity-crisis-34600
http://www.phrack.org/papers/modern_objc_exploitation.html
http://www.phrack.org/papers/modern_objc_exploitation.html

A. Case, G.G. Richard III / Digital Investigation 18 (2016) S3eS10S10
“NSEvent Class Reference,” https://developer.apple.com/library/mac/
documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_
Class/. [Accessed 25.01.16].

Pot, J., “What Mac users need to know about EL Capitan security” http://
www.makeuseof.com/tag/mac-security-el-captan-rootless/.
[Accessed 25.01.16].

“regripper tool”, http://windowsir.blogspot.com/2013/04/regripper-
updates.html. [Accessed 25.01.16].

Skape and Skywing, “Bypassing PatchGuard on Windows x64,” http://
www.uninformed.org/?v¼3&a¼3. [Accessed 25.01.16].

skape and Turkulainen, J., “Remote Library Injection,” http://www.
nologin.org/Downloads/Papers/remote-library-injection.pdf.
[Accessed 25.01.16].
Vilaca, P. “Tales from Crisis, Chapter 3: the Italian Rootkit Job”, http://
reverse.put.as/2012/08/21/tales-from-crisis-chapter-3-the-italian-
rootkitjob/. [Accessed 25.01.16].

“Volatility apihooks Plugin,” https://github.com/volatilityfoundation/
volatility/blob/master/volatility/plugins/malware/apihooks.py.
[Accessed 25.01.16].

“Volatilitymac_apihooks Plugin,” https://github.com/volatilityfoundation/
volatility/blob/master/volatility/plugins/mac/apihooks.py. [Accessed
25.01.16].

“Volatility Memory Analysis Framework,” https://github.com/
volatilityfoundation/volatility. [Accessed 26.01.16].

Wardle P. Methods of malware persistence on Mac OS X. In: Proceedings
of the virus bulletin conference; September, 2014.

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/
http://www.makeuseof.com/tag/mac-security-el-captan-rootless/
http://www.makeuseof.com/tag/mac-security-el-captan-rootless/
http://windowsir.blogspot.com/2013/04/regripper-updates.html
http://windowsir.blogspot.com/2013/04/regripper-updates.html
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://reverse.put.as/2012/08/21/tales-from-crisis-chapter-3-the-italian-rootkitjob/
http://reverse.put.as/2012/08/21/tales-from-crisis-chapter-3-the-italian-rootkitjob/
http://reverse.put.as/2012/08/21/tales-from-crisis-chapter-3-the-italian-rootkitjob/
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/apihooks.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/apihooks.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/mac/apihooks.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/mac/apihooks.py
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref38
http://refhub.elsevier.com/S1742-2876(16)30052-4/sref38

	Detecting objective-C malware through memory forensics
	Introduction
	Related work
	Objective-C security analysis
	Userland runtime analysis
	Userland malware detection

	Objective-C
	Background
	Runtime operations and data structures

	Objective-C malware
	Keystroke logging
	Background
	Runtime implementation
	Volatility analysis plugin

	Method swizzling
	Background
	Runtime implementation
	Volatility analysis plugin

	Named ports
	Background
	Runtime implementation
	Volatility analysis plugin

	Conclusions and future work
	References

