
ilable at ScienceDirect

Digital Investigation 18 (2016) S11eS22
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS USA 2016 d Proceedings of the 16th Annual USA Digital Forensics Research Conference
BinGold: Towards robust binary analysis by extracting the
semantics of binary code as semantic flow graphs (SFGs)*

Saed Alrabaee*, Lingyu Wang, Mourad Debbabi
Computer Security Laboratory, Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada
Keywords:
Binary Analysis
Reverse engineering
Semantic features
Assembly instructions
Semantic flow graph
Binary relation
Data flow analysis
* This research is the result of a fruitful collab
Computer Security Laboratory (CSL) of Concordia
Research and Development Canada (DRDC) Valcartie
DND/NSERC Research Partnership Program.
* Corresponding author.

E-mail address: s_alraba@encs.concordia.ca (S. A

http://dx.doi.org/10.1016/j.diin.2016.04.002
1742-2876/© 2016 The Author(s). Published by Else
licenses/by-nc-nd/4.0/).
a b s t r a c t

Binary analysis is useful in many practical applications, such as the detection of malware or
vulnerable software components. However, our survey of the literature shows that most
existing binary analysis tools and frameworks rely on assumptions about specific com-
pilers and compilation settings. It is well known that techniques such as refactoring and
light obfuscation can significantly alter the structure of code, even for simple programs.
Applying such techniques or changing the compiler and compilation settings can signifi-
cantly affect the accuracy of available binary analysis tools, which severely limits their
practicability, especially when applied to malware. To address these issues, we propose a
novel technique that extracts the semantics of binary code in terms of both data and
control flow. Our technique allows more robust binary analysis because the extracted
semantics of the binary code is generally immune from light obfuscation, refactoring, and
varying the compilers or compilation settings. Specifically, we apply data-flow analysis to
extract the semantic flow of the registers as well as the semantic components of the
control flow graph, which are then synthesized into a novel representation called the
semantic flow graph (SFG). Subsequently, various properties, such as reflexive, symmetric,
antisymmetric, and transitive relations, are extracted from the SFG and applied to binary
analysis. We implement our system in a tool called BinGold and evaluate it against thirty
binary code applications. Our evaluation shows that BinGold successfully determines the
similarity between binaries, yielding results that are highly robust against light obfusca-
tion and refactoring. In addition, we demonstrate the application of BinGold to two
important binary analysis tasks: binary code authorship attribution, and the detection of
clone components across program executables. The promising results suggest that BinGold
can be used to enhance existing techniques, making them more robust and practical.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Reverse-engineering has become a crucial process in
many important applications of digital forensics, ranging
oration between the
University, Defence
r and Google under a

lrabaee).

vier Ltd. This is an open acc
from program analysis to malware detection. Their
importance stems from the fact that there are many prac-
tical situations in which the original high-level source code
is unavailable, has been lost, or is otherwise inconvenient
to use. The objective of reverse-engineering often involves
understanding the control and data-flow structures of the
functions in the given binary code (Balliu et al., 2014).
However, this is usually a challenging task, as binary code
inherently lacks structures as a result of using jumps and
symbolic addresses, highly optimized control flow, varying
registers, memory location based on the processor and
ess article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s_alraba@encs.concordia.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.04.002&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.04.002
http://dx.doi.org/10.1016/j.diin.2016.04.002

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S12
compiler, and the possibility of interruptions (Balakrishnan
and Reps, 2010).

To this end, several studies have been conducted on
binary analysis in various domains. Certain existing tech-
niques are designed to identify clone functions (Khoo et al.,
2013; Myles and Collberg, 2005), reused functions
(Alrabaee et al., 2015; Ruttenberg et al., 2014), standard
compiler libraries recognition (Jacobson et al., 2011;
Rahimian et al., 2015), authorship attribution (Alrabaee
et al., 2014; Rosenblum et al., 2011), and function recogni-
tion (HexRays, 2011; Bao et al., 2014; Shin et al., 2015). The
features used in such techniques can be categorized into
three main groups: syntactic (e.g., n-gram Khoo et al.,
2013), semantic (e.g., longest common subsequence of
semantically equivalent basic blocks Luo et al., 2014), and
structural features (e.g., control flow graph Alrabaee et al.,
2015). However, the majority of these features may rely
critically on assumptions concerning specific compilers and
compilation settings. To make things worse, it is well
known that techniques such as refactoring and light
obfuscation (Section Accuracy results after applying light
obfuscation and refactoring techniques) can significantly
alter the structure of the code, even for simple programs.
Applying such techniques or changing the compiler and
compilation settings may thus lead to variability in the
precision/recall of many existing techniques (Meng and
Miller, 2015).

Problem statement

In this paper, we focus on the challenging problem of
enabling binary analysis techniques to resolve the afore-
mentioned issues using their existing features. We leverage
both data-flow and control-flow analysis in order to extract
the semantics of the code, which is then integrated into a
novel representation called a Semantic Flow Graph (SFG).
The extracted semantics of the code may enable existing
binary analysis techniques to withstand light obfuscation or
refactoring, since the extracted semantics of the binary code
is generally immune to light obfuscation, refactoring, and
varying compilers or compilation settings. In addition, there
are several other benefits in extracting the semantics of the
code automatically. For instance, the semantics could
represent the fingerprint of a code. In this regard, binary
fingerprinting approaches generally suffer from a common
problem: typically, fingerprints are overly sensitive to even
the slightest of changes to the binary code. The capability of
extracting the semantics of the code, which is more robust
than syntax-based fingerprints, would help immensely in
finding the right selection of fingerprints or in modifying
existing fingerprints in a reliablemanner. For example, while
the machine learning approach for identifying an author in
(Rosenblum et al., 2011) may suffer from the compiler's ef-
fects (Alrabaee et al., 2014), the features could lead to more
robust results if we apply them based on the semantics of
the code, as we will show in Section Applications.

Our approach

We begin by applying different levels of normalization
to the assembly code. The normalization process allows
the user to generalize the assembly instructions (i.e.,
memory references, registers, and constant values) to
different levels. Subsequently, we color each basic block
according to the proposed categories (to be discussed in
Section Normalization). When a color is added to each
basic block, we apply data-flow analysis to capture the
internal structure of a function, and we also leverage the
data flow among basic blocks to capture data and variable
dependencies. This representation of data and control
dependencies is considered a reliable representation;
among instructions, these data and control dependencies
remain unchanged regardless of the order of instructions
(Qiu et al.). The semantics of a control flow graph (CFG) is
represented by constructing a conservative approximation
of target function prototypes by means of use-def analysis
of possible callees. We then couple these results with liv-
eness analysis at each indirect callsite to arrive at a many-
to-many relationship between callsites and target callees
to recover callsite and callee signatures. Finally, we inte-
grate both types of semantics into a novel representation
called a Semantic Flow Graph (SFG). Various properties,
such as reflexivity, symmetry, and transitivity relations,
are then computed over the SFG as inputs to binary anal-
ysis tasks.
Results overview

We design and implement a prototype that applies our
techniques to facilitate data and control analysis. In the
current prototype, we focus on tackling the effects of
compilers, compilation settings, light obfuscation tech-
niques, and refactoring tools, which resolves many limi-
tations of existing works. We evaluate our tool by
applying it to a set of projects. We also evaluate the time
efficiency of our tool. To justify our claim of improving the
accuracy of existing works, we re-evaluate certain exist-
ing tools after applying our techniques and show that the
obtained accuracy is superior to the previously reported
accuracy.
Contributions

In summary, our main contributions are the following:

� We enumerate the effects that compilers, compilation
settings, light obfuscation modes, or refactoring tools
have on binaries and propose a solution for dealing
with such effects in binary analysis. Our approach
is fully automatic and does not require a priori
knowledge concerning the source of the compiler. The
novel way in which we model these effects also makes
our approach amenable to faster machine-learning
algorithms.

� We introduce various techniques to recover different
semantic components of binary code from both data and
control flow analyses of code. We also combine these
extracted semantic components into a novel represen-
tation called a Semantic Flow Graph.

� We test our method on a large test suite across
different operating systems, compilers, and compiling

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22 S13
optimizations. Our results show that our method ach-
ieves higher accuracy than previously available finger-
print representations.

� We re-evaluate certain existing binary analysis tech-
niques after integrating them with our system, and su-
perior obtained accuracy.
Roadmap

We first provide background information in Section
Background. We introduce a motivating example in Section
Motivating example. Section Extracting the semantics of
binary code describes the BinGold system in detail. Our
detection system is introduced in Section Detection
process. Experimental results, followed by some discus-
sions, are presented in Section Evaluation. Limitations and
a conclusion are presented in Section Related work.

Background

As previously mentioned, most existing works, espe-
cially for fingerprinting applications (e.g., authorship),
do not tolerate certain binary disturbances such as
compiler optimizations or differences in build environ-
ments. In what follows, we will describe examples of such
disturbances.

Function inlining

In practice, the compiler may inline a small function
into its caller code as an optimization. This may introduce
additional complexity to the code. Furthermore, function-
inlining significantly changes the CFG of a program, which
may become problematic for existing binary analysis ap-
proaches. Finding inlined code is a challenging task (Qiu
et al.). The accuracy will undoubtedly drop if the fea-
tures are derived from a function that includes inlined
functions or if the target programs do not show such
inlining. Still, using the multiple initial basic block
matches will not likely find the multiple counterparts in
the non-inlined target program. We thus use data-flow
analysis, which provides the ability to find code that has
been inlined.

Instruction reordering

Compilers may reorder independent computations to
enhance data locality. Reordered instructions in a basic
block change the syntactic representation. However, the
semantics of a basic block remain the same. By normalizing
the code, our system performs reordering at no additional
cost.

Common subexpression

Common subexpression elimination is a classical
compiler optimization technique used to remove redun-
dant computations. If two identical operations share the
same set of input operands, they clearly produce the same
output. In fact, in x86 code, effective address computation
is generally performed every time amemory access is made
(Lestringant et al., 2015). As a consequence, it is difficult to
detect whether twomemory accesses are made at the same
location since their address operands systematically belong
to different instructions.

Constant folding

Constant folding is the process of recognizing and
evaluating constant expressions at compile-time rather
than computing them at runtime. Terms in constant ex-
pressions are typically simple literals, such as the integer
literal 2, but may also be variables whose values are known
at compile-time. The process is also related to compiler
optimizations used by many modern compilers. An
advanced form of constant propagation known as sparse
conditional constant propagation can more accurately
propagate constants and simultaneously remove dead code
(for instance, 2 þ 4 becoming 6 at compile-time) (Glesner
and Blech, 2004). Either way, using sampling, the output
variables will have equal values. This process has the
additional advantage of comparing semantics instead of
syntax.

Calling conventions

The method of transferring parameters to a function is
not always well-standardized. In many cases, it is possible
to specify a particular calling convention in a Cþþ decla-
ration; for example, _cdecl, _stdcall. This specifies
which registers are used for transferring parameters. For
instance, ecx, edx means that the first parameter goes
into ecx, the second parameter goes into edx, and sub-
sequent parameters are stored on the stack. Furthermore,
the calling of statement functions is implementation-
defined; due to the fact that they are only locally
defined, the compiler has the freedom to apply any calling
convention that is deemed appropriate (Christodorescu
et al., 2005). Our system handles these effects by
abstracting from concrete register names. It is not
important which registers (or stack/memory addresses)
are used to pass registers or to return results. Having
different registers for passing different values would be
problematic when comparing the syntax of the instruction
representations. To this end, some optimizations modify
the CFG (e.g., loop unrolling, dead code elimination) and
may become problematic.

Refactoring process

Refactoring is the process of changing the structure of
code without changing the way it behaves (Fowler, 1999).
Refactoring is considered a best practice when creating and
maintaining software; indeed, research suggests that pro-
grammers practice it regularly (Murphy-Hill et al., 2012;
Xing and Stroulia, 2006). Examples of refactoring include
renaming a variable, moving a method from a superclass to
its subclasses, and taking a few statements and extracting
them into a newmethod. These examples are referred to as

Table 2
Graph features applied on CFGs for the fragment code in Listing 1, which is
compiled by visual studio, ICC, gþþ, and XCODE.

Feature Graph A Graph B Graph C Graph D

of nodes 8 8 13 5
of edges 9 8 15 4
K-cone 0e4 0e6 0e4 0e3
Radius 2 3 5 2
Width of graph 3 2 4 2
Length of graph 5 7 5 4
Diameter 3 4 6 2
Cyclometry complexity 3 2 4 1

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S14
RENAME, PUSH DOWN METHOD, and EXTRACT METHOD

(Fowler, 1999).

Motivating example

We start with a simple example composed of part of
MD5 written in Cþþ (Listing 1). In this sample, the hex
representation of the digest is returned as a string. MD5
performs many binary operations on the message (text or
binary data) to compute a 128-bit hash. We compile this
part of the MD5 example code on Windows 7 using gþþ,
Visual Studio 2010, XCODE, and ICC. We then use IDA to
disassemble the binary. Many security tools use IDA in this
way, as a first step before performing additional analysis
(Hu et al., 2009; Pappas et al., 2012).

Listing 1: Motivating example: Part of MD5 method.

We compute the control flow graph for the fragment
and then compare them as illustrated in Table 2. We notice
through the motivating example that the compiler also
makes changes to both the control structure and the basic
blocks and hence instructions. We show a list of traditional
features in Table 1.

We name the graphs as graph A, graph B, graph C, and
Graph D; these graphs represent CFGs from visual studio,
ICC, gþþ, and XCODE, respectively. We can see in Table 2
that among some graphs, there are features with the
same values; for example the number of nodes is the same
for graphs A and B. Cyclomatic complexity varies; it is
calculated by M ¼ EeN þ 2P, where E is the number of
edges, N is the number of nodes, and P is the number of
connected components. Additionally, we observe there are
some common values between graphs A and C. For
instance, the number of nodes is 8 when it is compiled with
Table 1
Graph features description.

Feature Description

Number
of nodes

Number of basic blocks

Number
of edges

Number of control flows (i.e., true)

K-cone K represents the number of CFG level
Radius Minimum vertex eccentricity
Width of graph Maximum number of nodes at the same level
Length of graph Number of nodes in the longest path
Diameter The longest shortest path between any

two nodes in the graph
Cyclometry

complexity
Number of linearly independent paths
within the CFG
Visual Studio, but it is 13 with gþþ and 5 with XCODE.
Additionally, the number of edges ranges from 4 to 17.

As a result of the aforementioned differences, the
structural approaches may lead to false positives by
claiming that two graphs are the same (because of similar
graph features), when in fact they are not. Additionally, we
observe through the motivating example that there are
differences in instructions at the syntax level; these dif-
ferences affect the results of the syntax approaches in
terms of reporting similarities. Hence, the necessity of
having an automated tool that can simply extract the se-
mantics of a codewill significantly reduce the percentage of
false positives.

Extracting the semantics of binary code

In this section, we describe how we built upon the
background in Section Background to perform the task of
extracting the semantics of a binary code.

Architecture overview

Our architecture employs a series of techniques illus-
trated in Fig. 1 and described in the upcoming sections.
First, the binary code is disassembled by IDA Pro (HexRays,
2011) disassembler. Second, a set of rules are applied to
assembly instructions to normalize the code. Third, data
flow rules are applied to these normalized instructions to
construct data flow dependencies. In addition, we extract
the semantics of the CFG by constructing a conservative
approximation of the target function prototype bymeans of
a use-def analysis of possible callees. We then couple these
results with liveness analysis at each indirect call site to
arrive at a many-to-many relationship between call sites
and target callees in order to recover call site and callee
signatures. Both types of semantics are integrated into a
new representation called the Semantic Flow Graph (SFG).
Subsequently, the properties of the SFG, such as the re-
flexive, symmetric, anti-symmetric, and transitive relations
are extracted from the SFG.

Normalization

The first step is to disassemble the input binaries into a
collection of assembly files. To do so, using a disassembler
such as IDA Pro (HexRays, 2011) is the common way. Each
assembly file contains a set of functions. Each function

Fig. 1. Architecture overview.

Table 3
Groups of instruction code.

Group Code Example

Stack s push
Arithmetic a add
Logical l xor
Compare c test
External call e call ds:scoket
Internal call i call sub:xxx
Conditional jump cj jle
Unconditional jump uj jmp
Generic g move

Table 4
The code for different operand types.

Operand 1 Operand 2

No Register Memory Constant

No 0 1 2 3
Register 1 11 12 13
Memory 2 21 22 23
Constant 3 31 32 33

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22 S15
contains a sequence of assembly code instructions, and each
assembly instruction consists of amnemonic and a sequence
of operands. Mnemonics are used to represent the low-level
machine operations. The operands can be classified into
three categories: memory reference, register reference, and
constant value. We may have two fragments of a code that
are identical both structurally and syntactically, but differ in
terms of memory references (Farhadi et al., 2015). For
example, two instructions with the same mnemonic but
with different registers, such as eax or ebx, can be consid-
ered identical. Thus, it is essential that the assembly code be
normalized prior to comparison. The objective of the
normalization step is to generalize the memory references,
registers, and constant values to an appropriate, user-
selected level. For constant values, the normalizer general-
izes them to VAL, which simply ignores the exact constant
value. The same logic applies to memory references. For
registers, the user can generalize them according to the
various levels of normalization. The top-most level REG
generalizes all registers, regardless of type. The next level
differentiates General Registers (e.g., eax, ebx), Segment
Registers (e.g., cs, ds), and Index and Pointer Registers (e.g.,
esi, edi). The third level breaks down the General Regis-
ters into three groups by sizeenamely, 32, 16, and 8-bit
registers.

After normalizing the instructions as described
above, we convert each instruction to a three-tuple
IT ¼ (g, c, d), where g represents the group to which
that instruction belongs, c represents the characteristics
of the opcode, and d represents the instruction opcode.
The digits in g denote the type that the opcode belongs
to according to Table 3. The digits in c denote the types
of operands. For example, c ¼ 1 for ”op reg”, c ¼ 11 for
”op reg, reg”, and c ¼ 12 for ”op reg, mem”. All char-
acteristic values for an instruction with 0, 1, or 2 oper-
ands are listed in Table 4.

Finally, IT¼ (g,c,d) is converted to a number called the ID
of the instruction by invoking the function ID(IT). The
function ID(IT) ¼ Hash(g)d(c)d(d) is applied to obtain a
32-bit integer, which is considered the ID of the instruction.
Hash() is a string hash function that maps different in-
struction mnemonics to different 16-bit integers.
Data flow graph construction

After normalizing the instructions, we apply data flow
to infer the program variable relations using coarse
reasoning about the program control flow and data de-
pendencies. Depending on how such analyses choose to
model the flow of information through the data structures.
Let Rk=Wk denote registers or memory that instruction Ik
reads or writes. If i1 and i2 are instructions belonging to I
and they are in the same basic block, then we define the
following possible dependencies: i1 writes something
which will be read by i2; i1 reads something before i2
overwrites it; and i1 and i2 both write the same variable.
This category of dependency is considered an internal de-
pendency. The other dependency is control dependence. If
i1 and i2 are both in the same basic block, and i2 is a control
instruction, we call it an internal control dependence. Also,
i1 and i2 are in two different basic blocks, where i1 is the last
instruction in the first basic block and i2 is executed in the
second basic block as the first instruction, where the

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S16
second basic block is a successor of the first basic block in
the control flow graph, then it is also an internal control
dependence.

Semantics of a CFG

Intuitively, we try to construct the semantics of the
control flowgraph by deploying a combination of two type-
based control flow invariants: target-oriented invariants
and callsite-oriented invariants. Target-oriented invariants
are based on traditional approaches (Budiu et al., 2005),
and callsite-oriented invariants have been explored
recently for binaries (Zhang and Sekar, 2013). We believe
that this invariant, inspired by source-based CFG tech-
niques (Tice et al., 2014), is applied at the binary level for
the first time. We demonstrate that even a binary-only
approach with this concept can be both efficient and
effective. As noted, extracting complete function and call-
site type information at the binary level is difficult in
practice. Therefore, a relaxed form of type information,
function argument count, and many-to-many type-based
matching strategy is realized between callsites and targets.

To compute arguments for each callsite, our system
performs a conservative backward static analysis. We
explain this analysis as follows. We use static analysis to
determine the argument count at the callee side, and
given a set of address-taken (AT) functions, our system
iterates over each function and performs custom inter-
procedural constant propagation analysis (Khedker
et al., 2009). The analysis focuses on collecting state in-
formation on registers, to determine whether or not they
are used for passing arguments. A register can exist in one
of the following states: read-before-write (R), write-
before-read (W), or clear/untouched (C). The total state
of a particular basic block contains the combined infor-
mation for all possible argument registers. The analysis
starts at the entry basic block of an AT function and it-
erates over the instructions to determine the usage of
registers. If all argument registers are either R or W, the
analysis terminates. However, if at least one register is in a
C state, a recursive forward-edge analysis starts, and
continues until the block has no outgoing edges. We as-
sume that the target writes all arguments and stop the
recursion, thus transforming all remaining clear registers
into a W state. Forward static analysis for a basic block B
that has n outgoing edges provides us with a set of states
Siði ¼ 1;2;/;nÞ. These states represent argument usage
information for each path following edge i. Each state is
represented by a vector comprising the status of each one
of the six argument registers.

We define the following invariants:
Definition 1. An indirect callsite cs is said to be type

Umax (max ¼ 0, 1, 2, …) if it prepares at most max function
arguments (referred to as actuals).

Definition 2. A function f has its address taken if and
only if the address of f is loaded into memory/registers.

Equivalence relations and partitions in SFG

The data flow graph together with the invariants form
the semantic flow graph. We combine those semantic
information to form a new representation in order to
facilitate more efficient graph matching between different
binary codes for determining the similarity or integrating
into some existing frameworks. Formally, a semantic flow
graph (SFG) is defined as follows.

Definition 3. A semantic flow graph G ¼ (N, V, z, g, w, l,
u) is a directed attributed graph where N is a set of nodes,
V4 (N � N) is a set of edges and z is edge labeling function
which assigns a label to each edge: z / g, where g is a set
of labels (internal dependency or external dependency). w
is a callecallee relation function which colors each node
nεN based on its relationwith other node kεN. Finally, u is a
function for coloring dataflow control or data
dependencies.

We illustrate a simple example in Fig. 2 to show how
SFG could be constructed. As shown, u is a function for
coloring dataflow dependencies; control or data de-
pendency. w is a callecallee relation function.We can notice
the green (in the web version) color in Fig. 2(c) represents
callerecallee relation. For instance, i2 has a callerecallee
relation with i5. Besides,

We then construct the relations from the SFG. We
generalize equivalence relations and equivalence classes,
where an equivalence relation on a set of features (se-
mantics features) F is a relation R3FxF such that:

� ðfi; fjÞ εR for all f εF , which is called the reflexive property
� ðfi; fjÞ εR implies ðfj; fiÞ εR
� ðfi; fjÞ and ðfj; fkÞ εR imply ðfi; fkÞ

We also extract a collection of nonempty sets of features
F, which is called partition P. This is a collection of
nonempty sets f1; f2;… such that fi∩fj ¼ øfor isj and
∪kFk ¼ X. Let � be an equivalence relation on a set F and let
f εF. Then ½f � ¼ ffjεF : fj � fi is called the equivalence class of
f}.

Detection process

We next describe the detection system Bingold. Since
Bingold extracts different types of features that
capture the semantics of code, the detection system is
composed of multiple components employing a series of
techniques, as depicted in Fig. 3 and explained in the next
subsections.
Exact matching

As previously described, we normalize the code ac-
cording to predefined rules and then apply the predefined
categories to those normalized instructions. We then
convert those instructions to hash vectors. Finally, we
match instructions together.
Graph edit distance

For inexact matching between data flow graphs, a dis-
tance metric is needed. In this paper, we employ the graph
edit distance for this purpose. The edit distance between
two graphs measures their similarity in terms of the

Fig. 2. An example of constructing SFG.

Fig. 3. Detection system.

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22 S17
number of edits required to transform one into the other.
Given two data flow graphs, to transform one graph into
another, we define two concepts: internal flow dependency
and external flow dependency. The edit distance between
two data flow graphs G and H is thus defined as the mini-
mum weight of all dependencies d between them; i.e.,
simðG;HÞ ¼ min wðVG;HÞ, where V is the function for
checking the dependencies.

We define the dissimilarity between two data flow
graphs G and H as follows:

Definition 4. The dissimilarity rðG;HÞ between two
graphs is a value ranging between ½0;1�, where 0 indicates
the highest similarity between graphs and 1 indicates the
lowest similarity, as calculated by:

rðG;HÞ ¼ wðVG;HÞ
jNGj þ jNHj þ jVGj þ jVHj þ j9Gj þ j9H j

where wðVG;HÞ is the weighted cost of dependencies, jNGj
and jNHj are the number of data flow nodes, jVGj and jVHj are
the number of internal dependencies, and j9Gj and j9Hj are
the number of external dependencies in G and H,
respectively.
Similarity measure

For the extracted relations, we compare two graphs in
terms of the similarity of their reflexive, symmetric, and
transitive relations. Given two data SFGs G and H, we define
the similarity measure simðG;HÞ ¼ max RðVG;HÞ. R is a
function extracts the common relations between two
graphs and measures the similarity between them.
Weight parameter settings

We define for each component (data flow, callerecallee
relationship, and SFG) in our system aweight. These wights
are: a, b, and g, to determine the contribution of each
component. We experimentally determine the optimal
values for these parameters. The parameter setting is
computed using nine-fold cross-validation. We evaluate
values of a ranging from 0 to 1 in steps of size 0.1 and b

ranging from 0 to 1 in steps of size 0.1. For a given choice of
a, b, and g, it is required that a þ b þ g ¼ 1. In each setting,
the features are extracted using our system and the F1 score
is computed that the maximum F1 score is obtained for
a ¼ 0.5, b ¼ 0.2, and g ¼ 0.3. We use these values as the

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S18
default for BinGold as well as throughout the rest of the
evaluation.

Evaluation

This section details the evaluation of our system. Section
Experimental setup describes the experimental setup.
Section Evaluation metrics presents the evaluation metrics.
Section Accuracy Rresults of C/Cþþ programs with
different compilers and compilation settings shows the
results of our system for different compilers and compila-
tion settings. Section Accuracy results after applying light
obfuscation and refactoring techniques shows the robust-
ness of our system against light obfuscation techniques and
the refactoring process. Finally, Section Applications shows
the effect of integrating our system into certain existing
approaches and demonstrates improvements in accuracy.

Experimental setup

Our experimental setup comprises our dataset, the
ground truth used, and the selection of system weight
parameters.

Dataset
We evaluate our system against 30 programs for which

we have the source code. These programs are only used to
extract the ground truth by compiling the source code with
debugging information.
Table 5
Programs used in our system evaluation.

ID Program Binary code Compiler

Type Funct

1 SQlite PE 3920 VS, GCC, ICC, XCODE
2 OpenSSL PE 2163 VS, GCC
3 info-zip PE 1784 VS, ICC
4 jabber PE 5910 VS, GCC
5 Hashdeep PE 2905 VS, XCODE, GCC
6 libpng PE 9226 VS, GCC
7 ultraVNC PE 3526 VS, GCC
8 lcms PE 1082 XCODE, ICC, GCC
9 ibavcodec PE 739 VS, GCC, ICC
10 TrueCrypt PE 1093 VS, GCC
11 libjsoncpp PE 4114 VS, ICC
12 7z PE 2179 VS, GCC, ICC
13 7zG PE 2530 VS, GCC, ICC
14 7zFM PE 3149 VS, GCC, ICC
15 lzip ELF 33 VS, GCC
16 tinyXMLTest ELF 2744 VS, GCC, ICC, XCODE
17 libxml2 ELF 58 VS, GCC, ICC
18 Mersenne Twister ELF 2740 VS, GCC
19 bzip2 ELF 285 VS, GCC
20 lshw ELF 1429 VS, GCC
21 smartctl ELF 457 VS, GCC
22 pdftohtml ELF 499 VS, GCC, XCODE
23 ELF statifier ELF 2340 VS, GCC
24 FileZilla PE 6250 VS, GCC
25 ncat PE 1855 VS, GCC
26 Hasher PE 436 VS, GCC, ICC, XCODE
27 tfshark ELF 439 VS, GCC
28 dumpcap ELF 448 VS, GCC
29 tshark ELF 1008 VS, GCC
30 pageant ELF 2212 VS, GCC
Table 5 summarizes the 30 programs. For each program,
the table shows the program identifier, the program name,
the binary code statistics, and the source compiler. From
the binary code it captures the type of executable generated
(PE or ELF) and the number of functions in the executable.
The binary code information is extracted using IDA pro
(HexRays, 2011) by reading the executable's debugging
information. 3 projects compiled by 4 compilers, 8 projects
compiled by 3 compilers, and 19 projects compiled by 2
compilers. The dependency of the program restricts us to
compiling each project using 4 compilers.

Our dataset are open-source projects from SourceForge
(Sourceforge, 2016), and the GNU software repository (Gnu
software repository, 2016). Our dataset includes 17 PE bi-
naries and 13 ELF binaries. We include multiple programs
from the same project that could be compiled by different
compilers and use those programs to analyze the applica-
bility and efficiency of our system.

Evaluation metrics

To evaluate the accuracy of our system, we conducted
the following experiments. First, we compared two sets of
results: the results output by some existing tools (i.e.,
authorship attribution, clone detection) and the results
after integrating our system with these tools. Second, we
compared the similarity of the same program when it is
compiled by different compilers and with different
compilation settings. Third, we applied different light
obfuscation techniques to the same binary file and checked
the similarity based on the semantic information extracted
by our system. Finally, we applied different refactoring
techniques to the source code and compiled it using
different compilers. We then employed our tool to measure
the similarity between the binary files.

We use validity metrics such as precision, recall, and F1.
Precision (P) and recall (R) are defined as follows:

P ¼ TP
TP þ FP

; R ¼ TP
TP þ FN

(1)

where TP (true positives) is the number of functions
assigned correctly by our system; FP (false positives) is the
number of functions assigned incorrectly by our system;
and FN (false negatives) is the number of functions not
assigned by our system but which actually belong to it. To
combine both precision and recall, we use the Fd score
with d ¼ 1, which is equal to the harmonic mean of the
precision and recall values. F1 scores fall within the in-
terval ½0;1�, where the larger the F1 score, the better the
overall accuracy. Since our application domain is much
more sensitive to false positives than to false negatives, we
use the F-measure as follows.

F1 ¼ 2$
PR

P þ R
(2)

Accuracy results of C/Cþþ programs with different compilers
and compilation settings

As previously mentioned, we compiled 30 programs
using different compilers such as XCODE and ICC. We

Table 6
Our system accuracy in determining the similarity between binaries.

Program Precision Recall F1 Program Precision Recall F1

SQlite 0.75 0.88 0.81 tinyXMLTest 072 0.79 0.75
OpenSSL 0.72 0.66 0.69 libxml2 0.78 0.82 0.80
info-zip 0.68 0.9 0.77 Mersenne Twister 0.78 0.88 0.83
jabber 0.67 0.88 0.76 bzip2 0.82 0.9 0.86
Hashdeep 0.63 0.72 0.67 lshw 0.83 0.83 0.83
libpng 0.82 0.68 0.74 smartctl 0.89 0.92 0.90
ultraVNC 0.81 0.67 0.73 pdftohtml 0.85 0.75 0.80
lcms 0.75 0.66 0.70 ELF statifier 0.83 0.74 0.78
ibavcodec 0.77 0.81 0.79 FileZilla 0.90 0.92 0.90
TrueCrypt 0.90 0.88 0.89 ncat 0.72 0.71 0.71
libjsoncpp 0.85 0.67 0.75 Hasher 0.71 0.68 0.69
7z 0.74 0.77 0.73 tfshark 0.70 0.65 0.67
7zG 0.66 0.81 0.73 dumpcap 0.62 0.64 0.63
7zFM 0.66 0.82 0.76 tshark 0.60 0.68 0.64
lzip 0.66 0.9 0.75 pageant 0.67 0.67 0.67

Table 7
Results after applying light obfuscation techniques and the refactoring
process.

Method Precision Recall F1

RR 0.89 0.88 0.88
IR 0.91 0.92 0.91
DCI 0.87 0.93 0.90
EIR 0.81 0.82 0.81
RV 0.87 0.90 0.88
MM 0.85 0.82 0.83
NM 0.67 0.72 0.70

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22 S19
evaluate how well our system detects the similarities
among those executables using the F1 score. Table 6 sum-
marizes the results. The median F1 score is 0.78. The pre-
cision ranges from 0.60 to 0.90, and the recall ranges from
0.64 to 0.92.

The accuracy of the Cþþ results is higher than the ac-
curacy of the C results because Cþþ source code contains
classes with small-sized methods. These small components
are mostly unaffected by compilers or compilation settings.
However, theymay be inlined and are thus easily identified
based on data flow components. For instance, the program
FileZilla has the highest F1 score of 0.90, while the program
dumpcap has the lowest F1 score of 0.63. For C programs,
the median F1 score is 0.67. The results for C binary code
similarity are worse than the results for Cþþ programs.
This is expected as C programmers are not constrained by
the object-oriented paradigm and often place functions
with different semantics in the same source file. For
example, the file tfshark.c in tfshark combines string pro-
cessing, message processing (read/write/print), and com-
mon functions for program output. These functions are
technically similar in semantic representation, but the
presence of all three reduces the F1 score to 0.64 when
using automated ground truth based on source files.
Moreover, C programs have less modularity than Cþþ
programs so it may be harder to extract the semantics of a
code.
Accuracy results after applying light obfuscation and
refactoring techniques

We consider a random set of 15 files from our dataset
and compile them using Visual Studio 2010. The binaries
are converted into assembly files through the disassembler,
and the code is then obfuscated using the DaLin generator
(Lin and Stamp, 2011). This generator applies the following
light obfuscation: (i) register renaming (RR), which is one of
the oldest and simplest techniques used in metamorphic
generators; (ii) Instruction reordering (IR), which trans-
poses instructions that do not depend on the output of
previous instructions; (iii) Dead code insertion (DCI), which
injects a piece of code that has no effect on program
execution (i.e., may not execute or may execute with no
effect); and (iv) equivalent instruction replacement (EIR).
We perform initial tests on the selected files and report the
accuracy measurements. Light obfuscation is then applied
and new accuracy measurements are obtained and
observed.

We used existing open-source tools for the Cþþ refac-
toring process (refactoring, 2016; Refactoring tool, 2016).
We consider the techniques of i) Renaming a variable (RV),
ii) Moving a method from a superclass to its subclasses
(MM), and iii) Extracting a few statements and placing
them into a new method (NM). In-depth explanations of
these techniques are detailed in (Fowler, 1999).

The results are shown in Table 7. The results shown in
the table demonstrate that our system performs well in
identifying similarities; however, we obtain lower accuracy
when we apply refactoring as opposed to when we apply
light obfuscation.
Time efficiency

The running time for extracting the semantics of code
is measured by considering the total time spent during
each step: normalization process, extracting the semantics
of the data flow, extracting the semantics of the control
flow, and forming the SFG by extracting the binary re-
lations. In the semantic extraction process, the binary
application is first disassembled using IDA pro (HexRays,
2011), and features are then extracted by running our
IDApython script. The assembly instructions must first be

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S20
normalized and hashed to a unique value. This process of
extracting the features takes 15 s for the smallest appli-
cation in our dataset (which is dumpcap) and 45 s for the
largest application (libpng) on a Windows 32-bit machine
with 16 GB RAM. Extracting the first part of the semantics
(data flow) takes 20 s for dumpcap and 60 s for libpng,
while extracting the second part of the semantics (control
flow) takes 23 s for dumpcap and 26 s for libpng. The last
step, forming the new representation and extracting the
relations described in Section Equivalence relations and
partitions in SFG, takes 10 s for dumpcap and 14 s for
libpng. Based on those results, we believe our system will
be efficient enough for most real world applications.
Applications

In this section, we demonstrate the applicability of our
system to two applications: authorship attribution and
clone detection.

Previous work has demonstrated that it is possible to
identify the authors of binary code (Alrabaee et al., 2014;
Rosenblum et al., 2011). However, existing approaches
usually assume that the compiler and its settings are
known. In addition, the features used in such techniques
are sensitive to any light obfuscation or refactoring. Hence,
we apply our system to the binary and then re-examine
their features based on the outputs of our system.
Regarding clone detection, some existing works have
demonstrated the use of K-CFG (Khoo et al., 2013), Tracelet,
n-grams (Khoo et al., 2013; Rosenblum et al., 2011), idioms
(Khoo et al., 2013; Rosenblum et al., 2011), RFG (Alrabaee
et al., 2014), and strings (Khoo et al., 2013). Both author-
ship and clone accuracy are greatly improved by inte-
grating our tool with the aforementioned tools, as shown in
Table 8.

Dataset. The dataset we use for authorship attribution
originates from Google Code Jam 2010 (The Google Code
Jam, 2016). It consists of single-authored programs. For
each author, there aremultiple programs as the Code Jam is
a multi-round programming contest. The dataset therefore
provides a perfect benchmark for authorship attribution,
and data from Google Code Jam has been used in all recent
program authorship studies (e.g., Alrabaee et al., 2014;
Rosenblum et al., 2011). Regarding clone detection, we
use 10 programs from our dataset (1e10).
Table 8
The effect of integrating BinGold to certain existing works.

Feature F0:5 F0:5 Application

(Before
applying
BinGold)

(After
applying
BinGold)

Idioms (Rosenblum et al., 2011) 0.71 0.80 Authorship
Idioms (Khoo et al., 2013) 0.72 0.88 Clone
Graphlet (Rosenblum et al., 2011) 0.60 0.76 Authorship
RFG (Alrabaee et al., 2014) 0.72 0.79 Authorship
Call graphlet

(Rosenblum et al., 2011)
0.64 0.71 Authorship

K-CFG (Khoo et al., 2013) 0.78 0.877 Clone
Tracelet (David and Yahav, 2014) 0.66 0.70 Function

Fingerprinting
Evaluation. Because those applications domain is much
more sensitive to false positives than false negatives, we
use the F-measure as follows.

F0:5 ¼ 1:25$
PR

0:25P þ R
(3)

Because each component in our system can handle one
or more effects, our system could enhance the application
of existing works. For instance, the normalization can
handle compiler effects, data flow analysis can identify
inline functions, the callerecallee relationship can tackle
the refactoring process, and the relation extracted from the
SFG can handle most light obfuscation. Results are sum-
marized in Table 8.

According to the results in Table 8, we can conclude that
our tool leads to substantial improvements in the accuracy
of existing work. For instance, it improves the accuracy of
clone systems (e.g., idioms) by 16%, which is a considerable
improvement. Another example considers the Tracelet
system, since it already includes normalization techniques
and data flow analysis, our tools only provide the benefit of
semantics in terms of control flow graph, which leads to 4%
improvement of accuracy.

Related work

Extracting the semantics of a binary code has attracted a
great deal of research in different areas. Inwhat follows, we
briefly review previous work in these areas.

Frameworks for extracting semantics of binary code

There are several frameworks proposed for extracting
the semantics of binary code for particular tasks, such as
BinSlayer (Bourquin et al., 2013), BinJuice (Lakhotia et al.,
2013), BitShred (Jang and Brumley, 2009), and iBinHunt
(Ming et al., 2013). BinSlayer uses a polynomial algorithm
to find the similarity between executables, obtained by
fusing the well-known BinDiff algorithm (Flake, 2002) with
the Hungarian algorithm (Munkres, 1957) for bi-partite
graph matching. BinJuice extracts the abstraction of the
semantics of binary blocks which is termed ”juice”.
Whereas the denotational semantics summarizes the
computation performed by a block, its juice presents a
template of the relationships established by the block.
BitShred is a framework for automatic code reuse detection
in binary code (Jang and Brumley, 2009). BitShred can be
used for identifying the amount of shared code based on
the ability to calculate the similarities among binary code.
iBinhunt is a technique to find the semantic differences
between two binary programs when the source code is not
available. It uses the process of analyzing control flow,
particularly intra-procedural control flow (Ming et al.,
2013).

Binary code characterization

Several approaches have used semantic or behavioral
patterns to characterize binary code in the anti-malware
community (Christodorescu et al., 2008; Fredrikson et al.,

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22 S21
2010). These approaches identify patterns in the externally
visible behavior of programs, such as interactions with the
operating system (through system calls or standard li-
braries) or manipulation of the file system; for example,
Fredrikson et al. form malware specifications based on the
sequence of system calls and their arguments observed at
runtime (Fredrikson et al., 2010). Recently, in (Qiu et al.,
2015), the authors propose a novel approach to charac-
terize a binary by identify library functions. They introduce
execution dependence graphs (EDGs) to describe the
behavior characteristics of binary code. Then, by finding
similar EDG subgraphs in target functions, they identify
both full and inline library functions. These works cannot
be directly applied to improve the accuracy of existing
works because, unlike our systemwhich extracts semantics
as generic inputs to other works, those tools are designed
for specific tasks.

Limitations, future work, and concluding remarks

Our work has a few important limitations. First, the
system is unlikely to achieve accurate results if the authors
packed their binary or used advanced obfuscation tech-
niques. Second, although we have tested our work on four
popular compilers, the effectiveness against other com-
pilers remains to be evaluated. Third, we have not investi-
gated the impact of different platforms such as ARM, MIPS,
etc. in this study.

We point out four main avenues for future research in
terms of improving our system. First, we suggest
researching the applicability of our method to other
compiler. Second, we suggest investigating more platforms
such as ARM. Third, we seek to extend our system to
include visualizations of the semantics of binary code
rather than presenting numeric results. Finally, while we
have demonstrated the viability of our system to enhance
existing works in a variety of applications, a more thorough
investigation of different applications is necessary.

To conclude, we have designed a system called BinGold
for accurately and automatically recovering the semantics
of a binary code. Our experimental results indicate that the
approach is efficient in terms of computational resources
and could thus be considered a practical approach to real-
world binary analysis. Moreover, the experimental results
suggest that BinGold can be used to enhance existing
techniques, making them more robust and practical.
Acknowledgments

The authors thank the anonymous reviewers for their
valuable comments. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the sponsoring organizations.
References

Alrabaee S, Saleem N, Preda S, Wang L, Debbabi M. Oba2: an onion
approach to binary code authorship attribution. Digit Investig 2014;
11:S94e103.
Alrabaee S, Shirani P, Wang L, Debbabi M. Sigma: a semantic integrated
graph matching approach for identifying reused functions in binary
code. Digit Investig 2015;12:S61e71.

Balakrishnan G, Reps T. Wysinwyx: what you see is not what you execute.
ACM Trans Program Lang Syst (TOPLAS) 2010;32(6):23.

Balliu M, Dam M, Guanciale R. Automating information flow analysis of
low level code. In: Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security. ACM; 2014. p. 1080e91.

Bao T, Burket J, Woo M, Turner R, Brumley D. Byteweight: learning to
recognize functions in binary code. In: USENIX security symposium;
2014.

Bourquin M, King A, Robbins E. Binslayer: accurate comparison of binary
executables. In: Proceedings of the 2nd ACM SIGPLAN program pro-
tection and reverse engineering workshop. ACM; 2013. p. 4.

Budiu M, Erlingsson U, Ligatti J. Control-flow integrity. Citeseer; 2005.
(2016). C refactoring tools for visual studio. http://www.wholetomato.

com/. [Accessed on Feb, 2016].
Christodorescu M, Kidd N, Goh W-H. String analysis for x86 binaries. In:

ACM SIGSOFT software engineering notes, vol. 31. ACM; 2005.
p. 88e95.

Christodorescu M, Jha S, Kruegel C. Mining specifications of malicious
behavior. In: Proceedings of the 1st India software engineering con-
ference. ACM; 2008. p. 5e14.

David Y, Yahav E. Tracelet-based code search in executables. In: ACM
SIGPLAN Notices, vol. 49. ACM; 2014. p. 349e60.

Farhadi MR, Fung BC, Fung YB, Charland P, Preda S, Debbabi M. Scalable
code clone search for malware analysis. Digit Investig 2015;15:
46e60.

Flake H. Graph-based binary analysis, vol. 2002. Blackhat Briefings; 2002.
Fowler M. Refactoring: improving the design of existing code. Pearson

Education India; 1999.
Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X. Synthesizing

near-optimal malware specifications from suspicious behaviors. In:
Security and privacy (SP), 2010 IEEE symposium on. IEEE; 2010.
p. 45e60.

Glesner S, Blech JO. Classifying and formally verifying integer constant
folding. Electron Notes Theor Comput Sci 2004;82(2):410e25.

(2016). Gnu software repository. www.gnu.org/software/software.html.
[Accessed on Feb, 2016].

(2011). HexRays: IDA Pro. https://www.hex-rays.com/products/ida/index.
shtml. [Accessed on Feb, 2016].

Hu X, Chiueh T-c, Shin KG. Large-scale malware indexing using function-
call graphs. In: Proceedings of the 16th ACM conference on Computer
and communications security. ACM; 2009. p. 611e20.

Jacobson ER, Rosenblum N, Miller BP. Labeling library functions in
stripped binaries. In: Proceedings of the 10th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools. ACM;
2011. p. 1e8.

Jang J, Brumley D. Bitshred: fast, scalable code reuse detection in binary
code (cmu-cylab-10-006). CyLab; 2009. p. 28.

Khedker U, Sanyal A, Sathe B. Data flow analysis: theory and practice. CRC
Press; 2009.

Khoo WM, Mycroft A, Anderson R. Rendezvous: a search engine for bi-
nary code. In: Proceedings of the 10th working conference on mining
software repositories. IEEE Press; 2013. p. 329e38.

Lakhotia A, Preda MD, Giacobazzi R. Fast location of similar code frag-
ments using semantic ‘juice’. In: Proceedings of the 2nd ACM SIG-
PLAN program protection and reverse engineering workshop. ACM;
2013. p. 5.

Lestringant P, Guih�ery F, Fouque P-A. Automated identification of
cryptographic primitives in binary code with data flow graph
isomorphism. In: Proceedings of the 10th ACM symposium on in-
formation, computer and communications security. ACM; 2015.
p. 203e14.

Lin D, Stamp M. Hunting for undetectable metamorphic viruses. J Comput
Virol 2011;7(3):201e14.

Luo L, Ming J, Wu D, Liu P, Zhu S. Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software
plagiarism detection. In: Proceedings of the 22nd ACM SIGSOFT in-
ternational symposium on foundations of software engineering.
ACM; 2014. p. 389e400.

Meng X, Miller BP. Binary code is not easy. 2015.
Ming J, Pan M, Gao D. ibinhunt: binary hunting with inter-procedural

control flow. In: Information security and cryptologyeICISC 2012.
Springer; 2013. p. 92e109.

Munkres J. Algorithms for the assignment and transportation problems. J
Soc Ind Appl Math 1957;5(1):32e8.

Murphy-Hill E, Parnin C, Black AP. How we refactor, and how we know it.
Softw Eng IEEE Trans 2012;38(1):5e18.

http://refhub.elsevier.com/S1742-2876(16)30033-0/sref1
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref1
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref1
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref1
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref2
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref2
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref2
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref2
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref3
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref3
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref4
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref4
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref4
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref4
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref5
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref5
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref5
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref6
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref6
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref6
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref7
http://www.wholetomato.com/
http://www.wholetomato.com/
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref9
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref9
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref9
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref9
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref10
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref10
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref10
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref10
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref11
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref11
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref11
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref12
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref12
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref12
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref12
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref13
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref14
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref14
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref15
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref15
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref15
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref15
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref15
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref16
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref16
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref16
http://www.gnu.org/software/software.html
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref19
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref19
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref19
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref19
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref20
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref20
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref20
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref20
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref20
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref21
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref21
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref22
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref22
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref23
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref23
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref23
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref23
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref24
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref24
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref24
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref24
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref25
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref26
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref26
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref26
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref27
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref28
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref29
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref29
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref29
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref29
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref29
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref30
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref30
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref30
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref31
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref31
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref31

S. Alrabaee et al. / Digital Investigation 18 (2016) S11eS22S22
Myles G, Collberg C. K-gram based software birthmarks. In: Proceedings
of the 2005 ACM symposium on applied computing. ACM; 2005.
p. 314e8.

Pappas V, Polychronakis M, Keromytis AD. Smashing the gadgets: hin-
dering return-oriented programming using in-place code randomi-
zation. In: Security and privacy (SP), 2012 IEEE symposium on. IEEE;
2012. p. 601e15.

Qiu J, Su X, Ma P. Library functions identification in binary code by using
graph isomorphism testings. In: Software analysis, evolution and
reengineering (SANER), 2015 IEEE 22nd international conference on.
IEEE; 2015. p. 261e70.

Qiu, J., Su, X., and Ma, P. Using reduced execution flow graph to identify
library functions in binary code.

Rahimian A, Shirani P, Alrbaee S, Wang L, Debbabi M. Bincomp: a strati-
fied approach to compiler provenance attribution. Digit Investig
2015;14:S146e55.

2016 Refactoring tool. https://www.devexpress.com/Products/CodeRush/.
[Accessed on Feb, 2016].

Rosenblum N, Zhu X, Miller BP. Who wrote this code? Identifying the
authors of program binaries. In: Computer securityeESORICS 2011.
Springer; 2011. p. 172e89.
Ruttenberg B, Miles C, Kellogg L, Notani V, Howard M, LeDoux C, et al.
Identifying shared software components to support malware foren-
sics. In: Detection of intrusions and malware, and vulnerability
assessment. Springer; 2014. p. 21e40.

Shin ECR, Song D, Moazzezi R. Recognizing functions in binaries with
neural networks. In: 24th USENIX security symposium (USENIX Se-
curity 15); 2015. p. 611e26.

(2016). Sourceforge. http://sourceforge.net. [Accessed on Feb, 2016].
(2016). The Google Code Jam. Available from: http://code.google.com/

codejam/. [Accessed on Feb, 2016].
Tice C, Roeder T, Collingbourne P, Checkoway S, Erlingsson U. Enforcing

forward-edge control-flow integrity in gcc & llvm. In: USENIX secu-
rity symposium; 2014.

Xing Z, Stroulia E. Refactoring practice: how it is and how it should be
supported-an eclipse case study. In: Software maintenance, 2006.
ICSM’06. 22nd IEEE international conference on. IEEE; 2006.
p. 458e68.

Zhang M, Sekar R. Control flow integrity for cots binaries. In: Usenix se-
curity; 2013. p. 337e52.

http://refhub.elsevier.com/S1742-2876(16)30033-0/sref32
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref32
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref32
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref32
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref33
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref33
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref33
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref33
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref33
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref34
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref34
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref34
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref34
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref34
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref36
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref36
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref36
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref36
https://www.devexpress.com/Products/CodeRush/
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref38
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref38
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref38
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref38
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref38
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref39
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref39
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref39
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref39
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref39
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref40
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref40
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref40
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref40
http://sourceforge.net
http://code.google.com/codejam/
http://code.google.com/codejam/
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref43
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref43
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref43
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref43
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref44
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref44
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref44
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref44
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref44
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref45
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref45
http://refhub.elsevier.com/S1742-2876(16)30033-0/sref45

	BinGold: Towards robust binary analysis by extracting the semantics of binary code as semantic flow graphs (SFGs)
	Introduction
	Problem statement
	Our approach
	Results overview
	Contributions
	Roadmap

	Background
	Function inlining
	Instruction reordering
	Common subexpression
	Constant folding
	Calling conventions
	Refactoring process

	Motivating example
	Extracting the semantics of binary code
	Architecture overview
	Normalization
	Data flow graph construction
	Semantics of a CFG
	Equivalence relations and partitions in SFG

	Detection process
	Exact matching
	Graph edit distance
	Similarity measure
	Weight parameter settings

	Evaluation
	Experimental setup
	Dataset

	Evaluation metrics
	Accuracy results of C/C++ programs with different compilers and compilation settings
	Accuracy results after applying light obfuscation and refactoring techniques
	Time efficiency
	Applications

	Related work
	Frameworks for extracting semantics of binary code
	Binary code characterization

	Limitations, future work, and concluding remarks
	Acknowledgments
	References

