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a b s t r a c t

The correct identification of operating system kernel versions is the first critical step in
deep memory analysiseit enables the precise parsing of the kernel data structures and the
correct interpretation of the observed system state. Identifying the exact kernel version is
particularly challenging for open source operating systems where kernel upgrades are
released frequently, and custom versions can be created on demand. State of the practice
approaches, such as Volatility's, rely on small and fragile signatures; state of the art
research work relies on intricate understanding of architecture-specific implementation
details, which limits them to Intel x86 environments, and requires continuous updates to
identify the distinguishing characteristics of new kernels.
In contrast, our work builds robust signatures based solely on the content of the kernel
images on disk, and is able to efficiently distinguish among incremental kernel version
updates. The approach is entirely content-driven and requires no low-level analysis of the
operation of the kernel. It utilizes an approximate matching toolesdhasheto extract kernel
fingerprints, and can be applied across different architectures without the need to parse
and interpret the RAM snapshot. In addition, our evaluation data which contains hundreds
of kernels, provides insights into the typical levels of content similarity across related
kernels.
© 2014 Digital Forensics ResearchWorkshop. Published by Elsevier Ltd. All rights reserved.

Introduction

Identifying the precise (operating system) kernel
version is critical to both memory/kernel dump forensics,
as well as VM introspection, management, vulnerability
identification, and pentesting applications. In a cloud
environment, the service provider needs to know the
specifics of the deployed stack in order to provide system
and network security services, monitor the deployed VMs
for abnormal behavior, and maintain an accurate overall
picture of the VM population.

Despite some common concerns, such as precision, the
specific requirement of security and forensic applications
have somewhat different points of view on the kernel
fingerprinting method requirements. In the VM moni-
toring/management scenario, tenant privacy and overall
(throughput) performance emerge as important problems.
Tenants would strongly prefer a provider who does not
continuously trawl through their VM file systems, and the
provider itself would not want to dedicate more than a
token amount of capacity to the screening task.

In a forensic context, where the analysis is performed on
a memory snapshot, privacy is not really a concern and
(unless a huge number of memory images are examined)
even less efficient methods will do the job. However, we do
have the additional concern of device/OS heterogeneity,
which means that genericity (general applicability) is a
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highly desirable property. In particular, the ability to work
with other architectures, ARM in particular, is becoming
increasingly important as a great variety of devices use
customized versions of the Linux/ARM platform.

As our further discussion will show, prior methods fail
to satisfy all of the requirements, whereas the presented
new approach does. In summary, the main contributions of
this work to the field are three-fold:

! We survey a representative pool of Linux kernels and
quantify their level of similarity and dissimilarity. The
results point to gaps in the evaluations performed by
prior research, and strongly suggest that prior tech-
niques have not been evaluated at a significant level of
granularity, andmay actually fail to precisely distinguish
among closely related kernels.

! Based on the results, we devise a new content-based
technique and tool, called sdkernel, which produces a
signature that is, on average, 0.3% of the size of the on-
disk kernel image. In quick mode, the tool can screen a
1GiB image against 520 kernel signatures per second, on
a single core.

! We present a detailed evaluation, which demonstrates
that sdkernel produces robust results with no false pos-
itives and no false negatives, even for nearly identical
kernel versions.

Related work

This section presents the existing OS fingerprinting
techniques that arebasedonmemoryanalysis and thus, close
to sdkernel and, other techniques that generally use CPU, file
system and other sources for kernel version identification.

Memory analysis-based fingerprinting techniques

Gu et al. (2012) propose OS-Sommelier, which is the
most complete and sophisticated solution attempted to-
date. The tool relies on detailed knowledge of the opera-
tion of the Intel x86 in order to find enough variation in the
basic implementation mechanisms to characterize indi-
vidual kernels. This is accomplished by extensively parsing
and analyzing the memory snapshot for kernel version
identification such as virtual to physical address trans-
lation, and disassembling the code. The creation of the
kernel's signature consists of three main steps:

The first step searches the entire snapshot and identifies
the page global directory (PGD) for virtual to physical
address translation. The second step identifies the kernel
codee the PGD is used tomake clusters of the similar read-
only pages, assuming that the kernel-code pages are read-
only for code protection. Further, the cluster is identified
that contains core-kernel code, not kernel module code,
since the same module can be loaded with different kernel
versions. Two particular instructions are used that empir-
ically identified as used only by the core kernel and not by
the modules.

The third step generates the signatures, which are the
cryptographic hashes of the kernel pages. Since the kernel

code contains pointers whose values may change when the
kernel loads in different locations in the memory. Thus this
step also involves zeroed out such pointer values before
computing hashes to neutralize the effect of the address
space randomization; the code is disassembled to identify
the locations of the pointers. In the end, a database of sig-
natures is created representing different versions of code.
Finally, when a kernel version needs to be identified in a
memory dump, all the above steps are repeated on the
dump to create signatures, which are then compared with
the database to identify the kernel version.

Lin et al. (2011) propose Siggraph to identify kernel data
structures from a memory dump. Since data structure
definitions vary with different OSes, Siggraph can be used
for OS fingerprinting. However, mostly well-known data
structures do not change with minor version, which makes
Siggraph only effective for detecting major kernel versions.
Siggraph is also not efficient since it examines the data
structure in many hierarchical levels and also analyze every
field in a data structure.

Christodorescu et al. (2009) propose to use interrupt
descriptor table (IDT) for kernel version identification. They
analyze the table, which is an array of interrupt vectors
containing pointers to interrupt handler code. Since inter-
rupt handler code differ with different OSes, they compute
the cryptographic hash values of handler code and use
them as signatures to identify different OSes. Since their
approach requires IDTR register value to directly identify
the location of IDT, it does not work on memory dump that
does not contain register values, i.e., it can only work on live
systems.

Volatility is a popular framework for analyzing memory
snapshots. It requires and maintains the profiles of kernel
versions for parsing memory dump and applying right set
of data structure definitions. In order to analyze a memory
capture, it first needs to know the operating systemversion
in the dump to select right profile for analysis. Volatility has
the imageinfo tool to identifyMSWindows versions such as
Windows XP SP1, Windows XP SP2, Windows 7, etc. The
tool scans the whole memory dump using predetermined
signatures to find kernel debugging symbols table, which
also contains the exact kernel version information. The
Volatility approach is quite fragile in that the signature
values can be altered to make Volatility not find the table.
Moreover, the values in the table can also be modified to
give Volatility an impression of a wrong kernel version.

Dolan-Gavitt et al. (2009) propose an automated
method to build robust signatures of data structures. They
identify the candidate fields, which are often accessed and
used by OS. The fuzzing is then used to modify the candi-
date field values. If the modifications destabilize the OS or
at least the functionality attached to the data structure, the
field is then chosen for signature. However, the approach is
not effective against the read-only data structures as such
these are only used for debugging purposes.

Other fingerprinting techniques

Quynh proposes UFO, which is kernel code-independent
OS fingerprinting technique and particularly uses CPU
register states for kernel version identification. UFO utilizes
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the fact that the protected mode of Intel platform enforces
no constraint on howOS is implemented. Thus, different OS
versions have different implementations of setting up low-
level data structures and other details such as global and
interrupt descriptor tables (GDT and IDT) (Russinovich
et al., 2009; Love, 2010), apparently making the values of
registers, such as base and limit values of GDTR and IDTR,
different. Furthermore, UFO uses fuzzy approach, where
instead of matching exact signature, it gives weight to each
parameter in a signature. While matching signatures, it
computes the sum of the weight of each parameter
matched and the signature with highest weight represents
the kernel version.

Gu et al. (2012) evaluated UFO on different versions of
Linux andWindows kernel and it appears that UFO does not
work well on many Windows kernels and close version of
Linux kernel. Moreover, UFO is restricted to work only on a
live systemandnormally cannot be used onmemory dumps.

There are number of OS fingerprinting tools (such as
nmap and Xprobe2) that remotely identify kernel versions
of a target system based on the packets being exchanged.
For instance, nmap sends crafted packets with uncommon
TCP options to target system. Since TCP/IP stack is imple-
mented somewhat differently by different operating sys-
tems, the differences in the reply of the crafted packets are
used to identify the OS versions. Similarly, Xprobe2 uses
ICMP packets for kernel version identification. These
techniques however, are not effective to detect minor ver-
sions of kernel.

One most certain approach to identify the kernel
version is through examining the file system on the hard
disk of target system. For instance, one could maintain a
database of hash values of different version of kernel code
file, which then can be used to find the hash value of the
kernel file in the hard disk of target system. The corre-
sponding kernel version of matched hash value is the
version of the kernel running on the target system. Virt-
inspector (virt-inspector) is an exemplar tool that provides
the capability to identify the kernel version on hard disk,
USB, CD etc. It uses libguestfs (libguestfs) library to examine
the file system on any non-volatile media.

Summary

The main challenge in building precise fingerprints is
the use of address space layout randomization (ASLR) as a
means of combatting buffer overflow attacks. Specifically, if
the underlying system uses primarily relocatable code (e.g.,
MSWindows), this means that the memory-resident code is
a modified version of the one on disk. The prior state-of-
the-art solution, OS-Somelier, relies on a complicated e
and potentially fragile e sequence of steps to compensate
for ASLR during fingerprint generation. It is the result of
substantial reverse engineering and low-level operational
analysis; as such, it is highly specific to the x86 architecture.

Brief similarity study of Linux kernels

Before we proceed with our design, we first perform a
quick survey of Linux kernels in order to gain a basic un-
derstanding of what level of selectivity is possible, and

what kind of expectations can reasonably be accommo-
dated. We are interested in two base casesestock kernels
and custom kernels. The former represent (the common
case of) pre-compiled kernels that are automatically
installed by major Linux distributions' software manage-
ment tools; the latter attempts to understand the effects of
customization.

Stock kernels: Ubuntu x86

For our first study, we chose the Ubuntu collection of
linux-image packages available online.1 The rationale
here is straighforwardeUbuntu is the most popular Linux
distribution, its package numbering closely follows the
mainline Linux kernel, and the packages are deployed in an
automated fashion. In other words, it is a representative
case of a stock kernel.

Out of the 943 available packages, we selected all the
generic versionsea total of 300 packages (150 32-bit and
150 64-bit kernels with matching versions). After unpack-
ing them, we ended upwith 288 unique kernel images (144
for each architecture).

Table 1 provides a basic breakdown of the data set. The
first column provides the range of version numbers, the
second gives the number of samples in the range (a few
versions are not present), and the third gives the default
Ubuntu version associated with the kernel. The set en-
compasses both long term support (LTS) releasese10.04,
12.04ewhich still receive updates, as well as regular 6-
month releases, which are phased out quickly.

We should not that these packages are not necessarily a
perfect historical recordesome of them contain backported
changes (bug fixes) and some of the minor release versions
are not part of the record at all. Also, it is likely that
different compiler versions have been used at different
times.

Similarity & uniqueness

Since a vmlinux (kernel) image is loaded into a tmpfs
instance, it is meaningful to examine its contents in page-
sized (4KiB) chunks. For that purpose, we produce the
4K-block-aligned crypto hashes for each kernel version and
then calculate the number of unique (across the entire set)
blocks for each kernel.

Table 1
Distribution of Ubuntu stock kernel version samples.

Kernel range Samples Ubuntu version

2.6.32-21e2.6.32-56 36 10.04
3.0.0-12e3.0.0-32 21 11.04
3.2.0-23e3.2.0-59 35 12.04
3.5.0-17e3.5.0-46 28 12.10
3.8.0-19e3.8.0-35 17 13.04
3.11.0-12e3.11.0-17 5 13.10
3.13.0-7e3.13.0-8 2 13.10

1 http://security.ubuntu.com/ubuntu/pool/main/l/linux/.
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Fig. 1 correlates the number of unique blocks in the 32-
bit (i386) and 64-bit (amd64) builds of each version. The
picture yields several interesting observations:

! With one exception, the number of unique blocks for a
given version correlates almost perfectly across the two
architectures. In retrospect, this is logical as the images
are built from the same source and use the same tool
chain. Therefore, we conclude that picking one of the
architectures would be sufficient to represented the
characteristics of both.

We do not have a conclusive explanation for the large
difference in unique blocks between the i386 and amd64
versions of the 2.6.0-52 kernel. There are a number of
possible explanations with differences in the build envi-
ronment as the most likely culprit. In any case, we only use
the results to reduce the data presented in the paper; the
observed deviation has no real bearing on the effectiveness
of the presented method.

! The vast majority, 112 out 144 of the kernels have a large
number (at least 1230) of unique blocks. In other words,

the changes introduced fromversion to version are large
enough to produce between 36 and 66% unique blocks.

! The remaining 32 kernel versions have very few, as low
as seven, unique blocks. This strongly suggests that
changes to the code between some versions are quite
minimal, making them an inherently difficult classifi-
cation problem.

To provide further context for the latter observation,
Table 2 lists the specific version for all points where at least
one of the architectures has fewer than 100 unique blocks.
The clustering data shows that, indeed, some groups of
consecutive stock kernels are nearly identical.

Custom kernels: arm5

For our second study we cross-compiled 357 Linux
kernel versions for the arm5 architecture in two configu-
rations each: default and qemu. The former uses all the
default build options, whereas the latter uses a configura-
tion necessary to run the kernels in QEMU.2 Table 3 pro-
vides a histogram of the kernels used, binned by major
version number.

The two kernel sets allow us to ask a basic ques-
tionehow similar/distinct are kernels compiled from the
same source but with different options (something a
custom kernel developer might do)?

As it turns out, the configuration does have a major
impact on our similarity measure and the effect is
remarkably consistent across the entire set. To measure it,
we similarity-compared the corresponding qemu and
default build of each kernel version.

Table 4 provides a summary of the results grouped by
major version. For example, to obtain the first row of
numbers describing the 3.00 kernel version, we considered
the series

sdhash
!
K3:00:01
qemu ;K3:00:01

default

"
;…; sdhash

!
K3:00:12
qemu ;K3:00:12

default

"
;

where K the kernel with the given configuration name and
version number.

The mean score for all series is in the 12 to 13 range,
with very tight deviation bounds. Such sdhash scores are a
very weak indicator (essentially noise) thereby implying
that differently configured kernel builds can easily diverge
substantially in their outcome. (We observed a similar
phenomenon with x86 kernels e the generic version of the
kernel tended to be more similar to neighboring generic

Fig. 1. Scatter plot of unique blocks per kernel: i386 vs. amd64.

Table 2
Kernel images with low number of unique blocks.

Kernel i386 amd64 Kernel i386 amd64

2.6.32-47 7 11 3.5.0-32 7 7
2.6.32-48 7 12 3.5.0-33 7 7
2.6.32-53 59 56 3.5.0-34 7 7
2.6.32-54 66 67 3.5.0-38 43 46
3.2.0-44 8 7 3.5.0-39 43 46
3.2.0-45 8 7 3.5.0-41 7 7
3.2.0-47 8 7 3.5.0-42 7 7
3.2.0-48 8 7 3.8.0-19 12 11
3.2.0-49 8 7 3.8.0-20 10 9
3.2.0-50 7 7 3.8.0-21 12 11
3.2.0-51 7 7 3.8.0-22 10 9
3.2.0-52 9 2095 3.8.0-23 10 9
3.5.0-28 10 9 3.8.0-24 10 9
3.5.0-29 9 8 3.8.0-25 10 9
3.5.0-30 10 9 3.8.0-28 44 51
3.5.0-31 7 7 3.8.0-29 44 51

Table 3
Kernels used in arm5 experiments.

Version Count Version Count Version Count

3.00 96 3.05 8 3.10 30
3.01 11 3.06 12 3.11 11
3.02 55 3.07 11 3.12 11
3.03 9 3.08 14
3.04 80 3.09 12

2 http://qemu.org.

V. Roussev et al. / Digital Investigation 11 (2014) S13eS21S16

http://qemu.org


versions than to other variations, such as lowlatency, of the
same kernel number.)

Summary

It appears that prior research has not considered kernel
versions at this level of granularity. Such consideration is
important for at least two reasons:

a) It shows that the evaluation of prior methods is likely
incomplete; indeed, it is quite possible that they would
fail to work at this level of granularity, despite claims to
perfection (e.g., Gu et al., 2012).

b) Custom kernels can produce potentially very different
outcomes based solely on build options. This is both
good and bad newseit suggests that it is feasible to
build very specific kernel signatures, but also implies
that it might be difficult to relate a custom kernel for
which we have no base to a known standard one.

Building content-based signatures

Similarity digest comparison

The concept of similarity digest (Roussev, 2010) and its
implementation sdhash were developed to provide byte-
wise approximate matching (Breitinger et al.) of arbitrary
data objects. Specifically, they are designed to support two
kinds of querieseresemblance and containment. In the
former, the objects compared are of similar size and the

query effectively seeks to estimate their level of common-
ality. In the latter scenario, the objects compared are very
different in size and the purpose is to establish wether the
small object is contained in the larger one.

Clearly, kernel identification can be modeled as a
containment query where we look for the presense of
known kernel content in a RAM snapshot. Identifying
known files in RAM has already been demonstrated for
triage purposes (Roussev and Quates, 2012) so the basic
rationale for using sdhash in this scenario is not a big
stretch. Yet, there are a couple of practical considerations
that require additional work.

Kernel similarity. As already discussed, OS kernels minor
releases for Linux systems can be quite similar to each
other, thereby requiring some preprocessing to build a
distinct fingerprint.

Throughput. Among the data set we are working with,
64-bit kernels can reach 20 MB and a realistic RAM snap-
shot can be several GB. The naive application of sdhash
would not be particularly performant. For example,
comparing 16 32-bit Windows kernels (55 MB) against 9
RAM snapshots (18 GB) on 4 cores (3 GHz Intel X5670)
takes 18 m 23 s.

Fortunately, both of these concerns point in the same
directionewe need to minimize the size of the signature,
while retaining a useful level of selectivity.

Building a kernel signature

The rationale behind our signature-building process is
twofoldeeliminate repetitive content across kernels and
downsample the results to the smallest size that retains
robust selectivity. The specific procedure we use consists of
the following steps:

1. Obtain a set of kernel images that are of interest. These
should include as many variations as possible in order to
facilitate the creation of the most specific fingerprints.

2. Split the images into page-sized blocks and eliminate all
non-unique blocks. This step has also the benefit of
eliminating all blocks filled with zeroes and other

Table 4
Kernel sdhash score statistics: qemu vs. default configuration.

Version Mean StDev Version Mean StDev

3.00 12.46 1.06 3.07 13.00 0.60
3.01 12.82 1.03 3.08 12.43 1.12
3.02 12.40 0.84 3.09 13.00 1.00
3.03 12.83 0.69 3.10 12.83 1.00
3.04 12.65 0.71 3.11 12.64 1.15
3.05 12.38 0.87 3.12 13.18 1.64
3.06 12.75 0.60

Fig. 2. Selectivity of amd64 signature bases.

Fig. 3. Relative selectivity of original and sampled amd64 signature bases.
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common blocks with low information content. As our
later discussion will show, this step is critical in building
distinct signatures for closely related kernels in the set.

3. Create a sample of the blocks of the desired size from each
image. The size of the sample could be chosen based on
absolute size (e.g., 100 4K blocks), or determined as a
fraction of the size of the image (e.g., 5%). In the evalu-
ation section, we explore the trade off between sample
size and precision.

4. Create a block-based sdhash similarity digest. We study
and recommend parameters that optimize size,
throughput, and selectivity.

The first two steps are performed in the samemanner as
in the empirical experiments on Section 3. Therefore, we
focus our discussion on the last two steps in the process.

Selectivity & sample size

For kernels with low number of unique blocks (7e67, in
our Linux x86 sample), it should be clear that the appro-
priate approach is to include all the available blocks in
order to maximize our ability to discern closely related
kernels.

To understand how much data we should retain from
the rest (with 1200 þ unique blocks), we performed a
cross-similarity study at various levels of sampling using
our Linux data set. We start by obtaining a signature base,
which consists of (the concatenation of) all unique blocks
for each image. We cross-compare the resulting files using
(4KiB) block-aligned sdhash, and compute the following
measure of selectivity:

Let bi; i ¼ 1::n be the signature bases for all n images
under consideration, and sdhash4kðbi; bjÞ; i; j ¼ 1::n be the
sdhash similarity score between bi and bj when compared
with 4K-blocked-aligned version of the algorithm. (Note:
sdhashðx; yÞ ¼ sdhashðy; xÞ, by design.)

We define the selectivity selðbiÞ of a signature base bi as

selðbiÞ ¼ 100&max
#
sdhash4k

#
bi; bj

$
: 1 ' j ' n; jsi

$
:

In other words, we use the minimum difference be-
tween a self-similarity test (sdhash4kðbi; biÞ ¼ 100) and any
other similarity comparison as a measure of selectivity; the
higher the difference, the greater the selectivity.

Fig. 2 shows the baseline level of selectivity for all 144
amd64 kernels (i386 results look nearly identical). The
most important observation is that in all cases, the selec-
tivity is positive, implying that the kernels can be suc-
cessfully identified using the chosen signature base. For
some of the kernels, however, the selectivity is quite small;
unsurprisingly, these clusters correspond to the kernel
versions with very low numbers of unique blocks cited
earlier (Table 2).

Having convinced ourselves that signature bases pro-
vide a sound foundation for building a fingerprint, our next
task is to explore the feasibility of shrinking the fingerprint
without incurring a precision penalty.

Let sðk; bÞ be a sampling function, whichegiven sample
size k and signature base bereturns a sampled base con-
sisting of k uniformly chosen blocks from b. If b has fewer
than k blocks, or k ¼ 0, the original data is returned.

To evaluate the effect of sampling on selectivity, we
compute selðsðk; iÞÞ, where k ¼ 0;100;200;500 and
i ¼ 1…n. In other words, we compare the selectivity of the
entire signature base to that of sampled bases consisting of
100, 200, and 500 blocks, respectively. Fig. 3 illustrates the
results in the form of a stacked chart, which compares in
relative terms the comparison results for each kernel.

In the ideal case, sampling would have no effect on the
scores and the chart would look like four identical hori-
zontal strips, each occupying 25% of the chart. We can see
that about 92% of the time (133 out of 144 cases) the four
areas are very close to equal, which implies that we can

Table 6
MS Windows versions used in the evaluation.

Short name Version description

xp.2 WindowsXP, Service Pack 2
xp.3 WindowsXP, Service Pack 3
vista.0 Windows Vista
vista.1 Windows Vista, Service Pack 1
vista.2 Windows Vista, Service Pack 2
win7.0 Windows 7
win7.1 Windows 7, Service Pack 1
win8.0 Windows 8
win8.1 Windows 8.1

Table 5
Selectivity deviations due to sampling.

Kernel # Original s-500 s-200 s-100

26 19 50 67 66
31 35 47 46 45
84 66 83 83 83
92 16 62 77 78
109 52 75 75 77
117 32 68 70 69
118 57 68 69 69
121 39 74 89 94
124 37 61 61 63
135 38 64 69 69
139 19 72 71 72

Table 7
Kernel versions used in the evaluation.

OS version Kernel file Short kernel name

xp.2 ntoskrnl.exe xp.2-os

xp.2 ntkrnlpa.exe xp.2-pa

xp.3 ntoskrnl.exe xp.3-os

xp.3 ntkrnlpa.exe xp.3-pa

vista.0 ntoskrnl.exe vista.0-os

vista.0 ntkrnlpa.exe vista.0-pa

vista.1 ntoskrnl.exe vista.1-os

vista.1 ntkrnlpa.exe vista.1-pa

vista.2 ntoskrnl.exe vista.2-os

vista.2 ntkrnlpa.exe vista.2-pa

win7.0 ntoskrnl.exe win7.0-os

win7.0 ntkrnlpa.exe win7.0-pa

win7.1 ntoskrnl.exe win7.1-os

win7.1 ntkrnlpa.exe win7.1-pa

win8.0 ntoskrnl.exe win8.0-os

win8.1 ntoskrnl.exe win8.1-os
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downsample the base all the way to 100 blocks with no
adverse effects on precision. This is a substantial result as it
reduces the size of signature (and the time to compare it)
12e32 times for our reference set.

In the rest of the cases, we can observe some non-trivial
deviations from the ideal case and Table 5 provides the
details. The first column gives the kernel sequence number

(consistent with Fig. 3), the second column provides the
selectivity in the unsampled case, whereas the columns
labeled s-500, s-200, and s-100 provide the selectivity score
for 500/200/100-block samples, respectively. We can see
that the deviations can be substantial; however, the good
news is that the selectivity actually goes up (i.e., differences
are exaggerated) so it does not negatively affect the
outcome.

Evaluation

In this section, we use three different platforms to
comprehensively evaluate the proposed solution with
respect to precision and throughput.

MS Windows (x86)

For the first set of experiments we used nine different
32-bit versions/service packs of the MS Windows (x86 ar-
chitecture) and 16 different kernels that were available on
the systems. Tables 6 and 7 provide a details list if these,

Table 8
Similarity scores for the full MS Windows kernels. Numbers in bold are the highest score per row.

xp.2 xp.3 vista.0 vista.1 vista.2 win7.0 win7.1 win8.0 win8.1

xp.2-os 15 15 13 14 14 13 13 13 13
xp.2-pa 44 21 13 14 14 13 13 13 13
xp.3-os 15 17 13 14 13 13 13 13 13
xp.3-pa 21 45 14 14 14 13 13 13 13
vista.0-os 12 12 18 17 17 14 14 13 13
vista.0-pa 12 12 35 17 17 14 14 13 13
vista.1-os 12 12 16 19 18 15 15 13 13
vista.1-pa 12 12 16 61 18 15 15 13 13
vista.2-os 11 12 16 19 19 15 15 13 13
vista.2-pa 12 12 16 20 37 14 15 13 13
win7.0-os 11 12 14 15 15 17 18 13 13
win7.0-pa 11 12 14 15 15 38 18 13 13
win7.1-os 11 12 14 15 14 18 22 13 13
win7.1-pa 11 12 14 15 15 17 31 13 13
win8.0-os 11 11 12 13 13 13 13 34 15
win8.1-os 11 11 12 13 13 13 13 15 53

Table 9
Similarity scores for sampled MS Windows kernels: s-100.

xp.2 xp.3 vista.0 vista.1 vista.2 win7.0 win7.1 win8.0 win8.1

xp.2-os 13 14 13 14 14 13 13 13 13
xp.2-pa 44 21 14 14 14 14 13 13 13
xp.3-os 16 17 13 14 13 13 13 13 13
xp.3-pa 22 46 14 15 14 13 13 13 13
vista.0-os 11 12 17 16 15 13 13 13 12
vista.0-pa 12 12 36 19 19 14 14 13 13
vista.1-os 12 12 16 19 17 15 15 13 13
vista.1-pa 12 12 16 64 19 16 16 13 14
vista.2-os 12 12 17 20 19 16 16 14 14
vista.2-pa 11 12 16 19 37 13 13 13 13
win7.0-os 12 12 15 16 15 17 18 13 14
win7.0-pa 11 12 14 15 14 40 18 13 13
win7.1-os 11 12 14 15 14 17 20 13 13
win7.1-pa 11 11 13 14 14 18 32 13 13
win8.0-os 11 11 12 13 12 12 12 34 14
win8.1-os 10 11 12 13 13 13 13 16 55

Table 10
Similarity scores and selectivity for base case and for 25x16KiB samples.

OS version sdhashbase selbase sdhash16k sel16k

xp.2 44 23 31 17
xp.3 45 24 23 9
vista.0 35 17 37 19
vista.1 61 42 31 14
vista.2 37 17 29 12
win7.0 38 20 30 18
win7.1 31 9 38 21
win8.0 34 19 21 6
win8.1 53 38 27 17
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and introduce shorthand notation used in the result
presentation.

Tables 8 and 9 present the results of comparing the each
of the 16 kernels on disk (rows) against nine 2 GB RAM
snapshots (columns). Most of the distributions come with
two different versions of the kernel of which only one
would be active and identifiable in the snapshot. Note that
the score along the diagonal would not be 100 because the
RAM layout of the image is different from the on-disk
serialization.

Intuitively, Windows kernels should provide an easy
targetethey change (officially) relatively infrequently so
the expected differences should be easy to spot. Indeed,
Tables 8 and 9 illustrate the point well. After downsampling
the kernels to approximately 100 (unique) 4KiB blocksean
almost eightfold reduction from 55 MB to 7 MB)ethe
similarity scores (and selectivity) remain almost identical.
The compute time (on four cores) is correspondingly
reduced 8.6 times (from 1103 to 128 s).

To further reduce compute time, we increase the block
size at which the sdhash score is computed from 4KiB to
16KiB; this has the effect of packing four times as many
features into the same signature (and is within the design
parameters of the tool (Roussev, 2012)). We use a sample
of 25 blocks of 16KiB each to construct the kernel
signatures.

Table 10 shows the results; to conserve space we give
the highest score (which in all cases comes from the correct
pairing) and the selectivity measure (the difference to the
second highest) for both the baseline and the 16KiB-sample
case. We observe that, while the absolute similarity change,
the level of selectivity remains more than adequate to
easily distinguish the best match.

The execution time, however, drops from 128 to 9.7 s on
four cores. Using the time for single-core execution (26.2 s),
we can calculate that our approach needs 1.44 s per GB to
screen a RAM snapshot for the 16 Windows kernels.

Linux (x86)

For this evaluation we picked a sampling of approxi-
mately equally-spaced kernel releases from the 2.6.32 and
3.2.0 series. In particular, we included the 2.6.32-54 and
3.2.0-45 kernels, which we expect to be difficult cases
based on the results in Table 2. Indeed, we can see from the
results in Table 11 that, in the average case, the digests
behave quite well but in the two extreme cases, we are

unable to distinguish the almost identical kernels (recall
that they have seven unique 4K blocks). Sampling at 16KiB
does not introduce any notable selectivity degradation.

Linux (arm)

Before we proceed the accuracy of the kernel identifi-
cation in a RAM snapshot, we perform a basic uniqueness
check on the 97 3.00 kernels. After block deduplication,
there are 27 kernels that have only five, or six unique 4K
blocks; this suggests that disambiguating them in a RAM
snapshot is an inherently difficult proposition. We self-
compared the 3.00 kernel set to determine if there are
any false results.

We find that there are no false matches at the 100
similarity level in both the base and 16K-sampled cases.
However, there are 18 pairs that yield a score of 90, or
above (most are 99), which suggests that they would be
potentially difficult targets.

To keep the effort reasonable, we limit our evaluation to
RAM snapshots of the 3.12 (qemu) kernel series, which is
representative of recent trends in the number and fre-
quency of minor version per major one. Table 12 shows
base and aggressively (16KiB) sampled scores and selec-
tivity measures. In all scenarios, no false positive/negatives
are introduced, while computation is sped up approxi-
mately 100 times.

Discussion

One aspect that has not been explored in the above
evaluation is changes to the tool chain, such as changing
the compiler (or its code generation options). Major
changes to the build environment (e.g., optimization level)
would result in different code output. Consequently, it
would not be possible to correlate these different versions
(and we are not aware of any work that would be able
bridge that gap). In other words, the notion of kernel version
in this context should be augmented to include configura-
tion/build options, and the specific tool chain used. Also, it
should be clear that sdkernel, like prior work, can only
identify kernel versions it knows about (or very similar
ones).

Table 11
amd64: Similarity scores and selectivity for base case and for 25x16KiB
samples.

OS version sdhashbase selbase sdhash16k sel16k

2.6.32-35 67 33 61 32
2.6.32-42 67 26 61 26
2.6.32-48 67 18 61 9
2.6.32-54 67 0 61 0
3.2.0-31 68 23 62 24
3.2.0-38 68 41 62 40
3.2.0-45 68 0 62 0
3.2.0-53 68 17 62 18

Table 12
arm5: Similarity scores and selectivity for base case and for 25x16KiB
samples.

OS version sdhashbase selbase sdhash16k sel16k

3.12.00 82 22 77 22
3.12.01 81 21 77 20
3.12.02 68 21 65 29
3.12.03 71 24 70 35
3.12.04 87 14 85 17
3.12.05 87 15 85 17
3.12.06 71 26 72 30
3.12.07 71 19 69 26
3.12.08 75 25 68 24
3.12.09 77 36 70 37
3.12.10 71 22 70 37
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Conclusion

In this paper we introduced a content-based method for
reliably identifying kernel versions. Our work makes
several contributions to the field:

! We performed a similarity survey of several hundred
Linux kernels for both the Intel x86 and ARM architectures.
We showed that, while most kernel versions are reasonably
different, a fraction of the releases are nearly identicale-
with less than 40KiB of unique content; such releases are
inherently difficult to discern from each other in a RAM
snapshot.

Relatively modest changes to the build setup can result
in very distinct kernel versions (from a data content point
of view).

Evaluations of prior work do not include sufficient level
of granularity in order to make a claim to perfection.

! Based on our observations, we developed a practical
approach to building and optimizing kernel signatures
by utilizing similarity digests. The signature is derived
from the on-disk representation of the kernel and can be
used to screen RAM snapshots. The developed approach
leverages existing tools and can be deployed
immediately.

! The technique works reliably and, with the exception of
near-identical kernels, produces no false positive or
false negative results. In the case of near-identical ker-
nels, the algorithm degrades gracefully in that it pro-
duces (nearly) identical scores.

! The method affords excellent throughputeit can screen
1 GB/s of RAM against 11 kernel signatures on a single
core. Given more processing power, the computation
can be scaled up as sdhash has a parallelized
implementation.

! Unlike prior work, which relies heavily on reverse en-
gineering and detailed understanding of how the un-
derlying hardware and OS operate, the developed
approach is architecture-agnostic. It does not require

any reverse engineering efforts to work; by extension, it
does not require maintenance as kernels evolve over
time.
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